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abstract: Disturbance regimes are ecologically important, but
many of their evolutionary consequences are poorly understood. A
model is developed here that combines the within- and among-
season dynamics of disturbances with evolutionary life-history the-
ory. “Disturbance regime” is defined in terms of disturbance timing,
frequency, predictability, and severity. The model predicts the optimal
body size and time at which organisms should abandon a distur-
bance-prone growth habitat by maturing and moving to a distur-
bance-free, nongrowth habitat. The effects of both coarse-grained
(those affecting the entire population synchronously) and fine-
grained disturbances (those occurring in a patch dynamics setting)
are explored. Several predictions are congruent with previous theory.
Infrequent or temporally unpredictable disturbances should have lit-
tle effect on the evolution of life-history strategies, even though they
may cause high mortality. Similar to seasonal time constraints on
reproduction, disturbance regimes can synchronize metamorphosis
within a population, resulting in a seasonal decline in body size at
maturity. Other model predictions are novel. When disturbances
cause high mortality, coarse-grained disturbances have a much
stronger effect on life-history strategies than fine-grained distur-
bances, suggesting that population structure (relative to the scale of
disturbance) plays a critical evolutionary role when disturbances are
severe. When within-population variance in juvenile body size is
high, two consecutive seasonal declines in body size at maturity can
occur, the first associated with disturbance regime and the second
associated with seasonal time constraints.

Keywords: body size, timing of metamorphosis, patch dynamics,
state-dependent strategy, geometric mean fitness, arithmetic mean
fitness.

While the ecological effects of disturbances have been rel-
atively well studied, the evolutionary consequences of dis-
turbances are less understood. Ecologically, disturbances
can mediate the coexistence of competitors (Hutchinson
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1961; MacArthur and Levins 1967; Huston 1979; Chesson
1994; Lavorel and Chesson 1995), eliminate nonnative taxa
(Meffe 1984; Minckley and Meffe 1987; Closs and Lake
1996), facilitate invasive taxa (McEvoy et al. 1993), and
alter community food web structure (Wootton 1998). Al-
though it seems reasonable that strong ecological forces
acting within populations could influence the evolution of
life-history strategies or morphologies, variation in dis-
turbance timing, predictability, frequency, and severity can
make it difficult to predict the sign and strength of selec-
tion. Several studies (Harper 1977; Lacey et al. 1983; Ven-
able and Brown 1988; Turner et al. 1998) have suggested
that the frequency of disturbances relative to an organism’s
life span may be evolutionarily important. While it is in-
tuitive that organisms may not adapt to phenomena that
are unlikely to occur during their life spans (e.g., volca-
noes, large fires, big floods, or storms [Turner et al. 1998]),
it is not clear how frequently disturbances must recur in
order to elicit evolutionary responses.

From an evolutionary perspective, disturbances can be
categorized as either fine-grained events that affect only a
portion of the population at a time or coarse-grained
events that affect the entire population simultaneously
(Iwasa and Levin 1995). Fine-grained disturbances (the
“patch dynamics” perspective of Pickett and White [1985])
include gap formation in forest canopies (Runkle 2000),
flash floods (Lytle 2000a), and scouring of marine benthos
(Airoldi 2000). Coarse-grained disturbances include inter-
annual variability in growing season length or annual rain-
fall (Philippi 1993; Danforth 1999), as well as disturbances
with large areal coverage, such as hurricanes (Turner et
al. 1998). The spatial scale of a disturbance relative to the
spatial distribution of the population is important because
it determines how fitness should be estimated in models
of life-history evolution. When disturbances occur syn-
chronously over the entire population, as with coarse-
grained disturbances, the geometric mean of reproductive
success over multiple seasons is the correct measure of
fitness (Cohen 1966; Gillespie 1977). If the population
occurs across many habitat patches that experience dis-
turbances at different times, as with fine-grained distur-
bances, and the breeding population consists of individuals
pooled from these patches, the arithmetic mean is appro-
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priate. Thus, evolutionary models incorporating fine- and
coarse-grained disturbances are inherently different. In
practice, models can sometimes be modified to account
for one case or the other (Iwasa and Levin 1995; see
below).

Much of the theory concerning how disturbances affect
life-history evolution has focused on coarse-grained dis-
turbances. Building on the theory of Cohen (1966, 1970,
1971), models have been developed to explore how re-
sources in plants are allotted to growth versus reproduc-
tion when the length of the growing season varies across
years (King and Roughgarden 1982a, 1982b; Kozłowski
and Weigert 1986, 1987). For organisms that produce dia-
pausing seeds or eggs, bet-hedging models predict that
among-year environmental variability may favor repro-
ductive strategies where only a fraction of offspring ger-
minate or hatch in a given season (Venable and Lawlor
1980; Ellner 1985a, 1985b; Bradford and Roff 1993, 1997;
Sasaki and Ellner 1995). In each of these models, the “dis-
turbance” is the occurrence of an unfavorable physical
environment in a particular year, and the life-history strat-
egy that maximizes the geometric mean of reproductive
output over many years has the highest fitness. The dis-
turbance does not need to be abiotic, however. Hairston
and Munns (1984) used a similar approach to model how
among-year variability in the onset of severe fish predation
affected the optimal time for copepods to begin producing
fish-resistant diapausing eggs.

Most of these coarse-grained models focus on environ-
mental variability among years, but many disturbance dy-
namics occur within years. Relevant parameters include
the frequency (expected number of disturbances per sea-
son), severity (expected mortality from a single distur-
bance), timing (when disturbances occur during a season),
and predictability (variance in within-season timing) of
disturbances (Pickett and White 1985; Richter et al. 1996).
Although seasonal timing and predictability are implicit
in many of the coarse-grained models, they assume that
only one disturbance occurs per season ( ).frequency p 1
Some types of disturbance, however, occur multiple times
per season or not at all, for example, flash floods (John
1964; Grimm and Fisher 1989) and the drying and refilling
of temporary ponds (Semlitsch and Wilber 1988; Newman
1989). Thus, a parameter that specifies within-season fre-
quency is needed to adequately model these kinds of
disturbances.

The goal of this article is to develop a general distur-
bance model that combines the timing, frequency, severity,
and predictability of disturbances (both fine and coarse
grained) with evolutionary life-history theory. This the-
oretical framework allows the investigation of several ques-
tions. How do disturbance regimes affect life-history at-
tributes of organisms with complex life cycles, such as the

size at and timing of maturity? How frequently and pre-
dictably must disturbances recur to affect the evolution of
these traits? How does population structure influence the
evolutionary response to disturbance? Used in this way,
this disturbance model may be useful for determining
when ecologically important disturbance regimes also have
evolutionary consequences.

Disturbance Model

The following model explores how among-season varia-
bility in disturbance regime (sensu Cohen 1966 and related
papers) and within-season disturbance dynamics (based
on Ludwig and Rowe 1990; Rowe and Ludwig 1991) affect
life-history evolution. In this model, disturbances affect
individual fitness directly via mortality and indirectly by
causing mortality in offspring. The model is based on the
following life cycle: juveniles grow in a particular habitat
where they risk mortality from disturbances; at time T,
juveniles stop growing and begin metamorphosis for a
fixed time period; at time TE, nongrowing adults move to
a second habitat that is free from disturbance; at time TR,
adults reproduce by placing offspring back in the disturbed
habitat. Thus, juveniles face a trade-off between growth
and disturbance mortality. Because the risk of disturbance
changes during the season, the model seeks the optimal
body size, W, and time, T, at which juveniles should stop
growing and mature into the reproductive stage.

Disturbances and Survivorship

The disturbance regime consists of the timing, predicta-
bility, frequency, and severity of disturbances. Survivorship
is a function of the time spent in this disturbance regime.
The probability of an individual surviving i disturbances
before adulthood is , where l is the proba-iS p (1 � l)i

bility of mortality from a single disturbance event (dis-
turbance severity). Assuming that disturbance events occur
independently according to a Poisson distribution, the
probability of i disturbances occurring from some time t
to adulthood at time TE is

i �u1u e1P p , (1)i i!

where , a time-inhomogeneous Poisson rateTEu p g(t)dt∫1 t

parameter. The frequency of disturbances, such as thun-
derstorms and flash floods, conforms to a Poisson distri-
bution (Fogel and Duckstein 1969; Lytle 2000b). The func-
tion g(t) describes the timing of disturbances throughout
the season; it is assumed to have a single maximum. In
the examples explored below, , where f is theg(t) p fZ(t)
average number of events per season (disturbance fre-
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quency) and Z(t) is a normal distribution with mean dis-
turbance date f (disturbance timing) and standard devi-
ation j (disturbance predictability). The adult stage is
assumed to occur after metamorphosis so that T pE

, where r is the duration of the metamorphic stage,T � r

a fixed quantity. Because u1 is evaluated through TE, meta-
morphosing individuals risk mortality from disturbances
even though no growth occurs during this stage. Meta-
morphosis thus entails a fixed cost. For organisms that do
not undergo metamorphosis, .r p 0

The probability of offspring surviving j disturbances af-
ter reproduction is . The probability of j dis-jO p (1 � l)j

turbances occurring from the time of reproduction to the
end of the disturbance season is

j �u2u e2P p , (2)j j!

where and TZ is some date well beyond theTZu p g(t)dt∫2 TR

end of the disturbance season ( at TZ). Reproduc-g(t) r 0
tion occurs after metamorphosis and the adult life stage
(y, a fixed quantity) are completed, so that T p T �R

.r � y

Growth and Reproduction

The growth rate of individuals is assumed to follow a
logistic form:

dw w
p rw 1 � , (3)( )dt k

where k is maximum body mass, w is body mass, and r
is a growth rate constant. The number of offspring pro-
duced by an individual, E, is related to body mass:

ba(W � W ) if W 1 W ,C CE(W ) p (4){0 otherwise,

where W is body mass at time of reproduction, WC denotes
the minimum body size for offspring production, b is a
parameter that controls the shape of the relationship, and
a is a scale factor that adjusts for units of measurement.

Seasonal Time Constraints

As in the Rowe and Ludwig model, seasonal time con-
straints on reproduction affect the expected value, or con-
tribution, per offspring:

a

T � TC R if T ! T ,R C( )TCC(T ) p (5)R {
0 otherwise,

where TC is the upper time limit for reproduction and a

is a parameter that controls how rapidly this time con-
straint approaches. For C(TR) decreases as TC ap-a 1 0
proaches (earlier offspring are more valuable than later
ones), and adults are unable to reproduce after TC.

Arithmetic Mean Fitness

For an individual that matures at time T in a season
where i disturbances occur before adulthood and j dis-
turbances occur after reproduction, fitness is W (T) pij

. When disturbances are fineS # O # E(W(T)) # C(T )i j R

grained and occur in a patch dynamic setting so that dis-
turbances happen independently in each patch according
to g(t) and the progeny from all patches mix to form a
single breeding population, the arithmetic mean is the
appropriate way to calculate long-term fitness. Arithmetic
mean (AM) fitness is estimated by summing fitness across
all possible disturbance seasons weighted by their prob-
ability of occurring:

� �

F (T) p PPW (6)��AM i j ij
ip0 jp0

� i �u1u e1ip (1 � l)�
i!ip0

� j �u2u e2j# (1 � l) (7)�
j!jp0

# E # C

�lu �lu1 2p e # e # E # C. (8)

Timing of reproduction is optimized by maximizing fitness
as a function of T. This is done by taking the first derivative
of FAM with respect to T and setting it equal to 0. First,
taking the natural log of both sides for convenience,

ln [F (T)] p �lu � lu � ln (E) � ln (C), (9)AM 1 2

d ln [F (T)]AM p �lg(T )EdT

′ ′E C
� lg(T ) � � p 0, (10)R E C

′ ′E C
l[g(T ) � g(T )] � � p 0. (11)R E E C
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Figure 1: Optimal body size (W) versus optimal timing of metamor-
phosis (T) when disturbances cause high mortality ( ) or none atl p 1
all ( ), under arithmetic mean assumptions. Shaded region repre-l p 0
sents disturbance timing Z(T) with parameters and .f p 150 j p 25
Other parameter values: , , , , ,f p 1 a p 0.1 b p 1 k p 10 W p 2C

, , , and . Only individuals that havey p 10 r p 10 T p 250 r p 0.01C

attained large body sizes (near ) early in the season metamorphosek p 10
during period A. For the curve, no metamorphosis occurs duringl p 1
period B because , the maximum body size. Individuals meta-W 1 k
morphose during period C because reproduction (at time )T � r � y

will occur after the peak of the disturbance season. During period D, W
increases as the disturbance season wanes, then decreases during period
E in response to TC.

After incorporating the biological assumptions outlined
above (see appendix), equation (11) becomes

W
brW 1 �( )ka

lf[Z(T ) � Z(T )] p � . (12)R E T � T W � WC R C

The left side of equation (12) represents the relative change
in fitness due to disturbance regime. When f or orl r 0

, this side approaches 0, and disturbances have noT r TE R

effect on optimal metamorphosis strategy. Additionally,
when the left side of equation (12) is 0 and r and y r

, and equation (12) collapses to that of Rowe and0 T r TR

Ludwig (1991), where metamorphosis into the adult stage
is driven primarily by seasonal time constraints (for cases
where their . The Rowe and Ludwig (1991)m(w) r 0)
single-habitat growth model is, therefore, nested within
the more general case described here.

Disturbance Model Results

General Behavior

After substituting parameter values, equation (12) can be
solved for W in terms of T, yielding two roots. Figure 1
shows the optimal relationship between body size and tim-
ing of metamorphosis for the positive root and param-
eter values , , , , ,f p 1 f p 150 j p 25 a p 0.1 b p 1

, , , , , andk p 10 W p 2 y p 10 r p 10 T p 250 r pC C

. In the case where disturbances do not cause mortality0.01
( curve), W declines solely as a function of the endl p 0
of the season (TC). Body mass, W, becomes progressively
smaller as TC approaches, and all individuals larger than
WC begin metamorphosing with sufficient time remaining
to complete their metamorphic and adult stages before TC.
This is a state-dependent strategy because the decision to
continue growing or begin metamorphosis is based on
current body mass (Rowe and Ludwig 1991; Nylin and
Gotthard 1998).

When disturbances cause mortality, this pattern is al-
tered in several ways (lp1 curve). Although individuals
attaining large body sizes early in the season may meta-
morphose at this time (period A), no metamorphosis oc-
curs as disturbances become more likely (period B, where

, the maximum body size). This occurs because off-W 1 k
spring produced at this time have low value since they
would be placed in the disturbance-prone habitat at the
height of the disturbance season. The largest individuals
(W near 10) begin metamorphosis during period C, with
progressively smaller individuals metamorphosing as the
disturbance season builds. Note that individuals meta-
morphosing at this time will escape the peak of the dis-
turbance season by becoming adults, and their offspring

will be placed in the disturbance-prone habitat just as the
probability of disturbance begins to decline. Very small
individuals ( in this example) risk the worst of theW ! 6
disturbance season to continue juvenile growth. After the
peak of the disturbance season has passed (period D), the
marginal benefits of remaining in the juvenile stage begin
to outweigh the risks, and smaller individuals that have
survived thus far are expected to continue growing. Finally,
during period E, the approach of TC causes any remaining
individuals to begin metamorphosis at progressively
smaller body sizes.

Population Synchrony

In addition to influencing W, disturbances may also affect
the synchrony of metamorphosis within a population. Fig-
ure 2 shows a series of juvenile growth trajectories. It is
assumed that growth trajectories are offset because of var-
iability early in the life cycle (different oviposition dates,
different initial growth rates, etc.). Metamorphosis occurs
where growth trajectories cross the W(T) curve. Lack of
metamorphosis during period B causes a relatively large
number of trajectories to stack up; these trajectories in-
tersect the steep W(T) curve in period C, producing syn-
chronous metamorphosis over a relatively short period of
time. For smaller individuals, a similar delay (period D)
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Figure 2: Effect of the W(T) curve on hypothetical growth trajectories.
Individuals metamorphose (denoted by arrows) when their growth tra-
jectories intersect the curve. Dashed line is the mean disturbance date f.
Parameter values same as those in figure 1; curve. Most meta-l p 1
morphosis occurs when the W(T) curve declines steeply during periods
C and E (see text).

Figure 3: Effect of disturbance severity on optimal body size and optimal
timing of metamorphosis, under arithmetic mean (top panel) and geo-
metric mean (bottom panel) assumptions. Parameter values same as those
in figure 1. For small l, both models make similar predictions. Large l

causes disturbances to have a much more pronounced effect under geo-
metric mean assumptions.

and synchronous period of metamorphosis (period E) oc-
cur before TC. These results suggest that disturbances can
serve to synchronize the metamorphosis of individuals that
are following different growth trajectories. Given a par-
ticular level of initial within-population size variability,
disturbance regimes should favor greater temporal syn-
chrony in metamorphosis while simultaneously increasing
the observed variability in body size at metamorphosis.

Geometric Mean Fitness

When disturbances are synchronized across patches or
when the entire population experiences the same large-
scale disturbances, the geometric mean is the appropriate
measure of long-term fitness. Geometric mean (GM) fit-
ness is calculated by summing the logarithm of fitness
across all possible disturbance seasons:

� �

F (T) p PP ln (W ) (13)��GM i j ij
ip0 jp0

� i �u1u e1ip ln [(1 � l) ]�
i!ip0

� j �u2u e2j� ln [(1 � l) ] (14)�
j!jp0

� ln (E) � ln (C)

p ln (1 � l)u � ln (1 � l)u1 2

� ln (E) � ln (C). (15)

Differentiating with respect to T and setting this quantity
equal to 0,

′ ′E C
ln (1 � l)g(T ) � ln (1 � l)g(T ) � � p 0, (16)E R E C

′ ′1 E C
ln [g(T ) � g(T )] � � p 0. (17)R E( )1 � l E C

Comparing equation (17) with equation (11) demonstrates
that the optimality conditions for the geometric and arith-
metic mean fitnesses differ by a single term: l in the ar-
ithmetic mean (AM) model becomes in theln [1/(1 � l)]
GM model. Thus, using the geometric rather than the
arithmetic mean influences only how disturbance severity
affects the optimal life-history strategy. Disturbance se-
verity has a proportionately higher effect under GM as-
sumptions because . For l near 0, bothln [1/(1 � l)] 1 l

models will produce essentially the same results, but for
, is greater than twice l. As l ap-l 1 0.8 ln [1/(1 � l)]

proaches its maximum at 1, approaches in-ln [1/(1 � l)]
finity. Figure 3 shows that, unlike the AM model, under



530 The American Naturalist

Figure 4: Effect of disturbance predictability (j) on the W(T) curve,
under arithmetic mean assumptions. Dashed line is the mean disturbance
date. Parameter values same as those in figure 1; curve. Whenl p 1
disturbance regimes are predictable ( curve), individuals emergej p 3
synchronously and at a wide range of body sizes. Unpredictable distur-
bance regimes produce no life-history response ( curve, which isj p 60
very similar to curve in fig. 1).l p 0

Figure 5: Effect of disturbance frequency (f) on the W(T) curve, under
arithmetic mean assumptions. Parameter values same as those in figure
1. Greater disturbance frequencies favor metamorphosis before the mean
date of disturbance (dashed line), irrespective of body size.

GM assumptions, disturbances drive nearly all the body
size pattern when l is high.

Disturbance Predictability

Variance in the mean date of disturbance (j) also has an
effect on optimal body size at metamorphosis. When dis-
turbances always occur within a narrow time interval, the
optimal strategy is to metamorphose immediately before
the mean date of disturbance, irrespective of body size
( ; fig. 4). This strategy causes body size at meta-j p 3
morphosis to decline sharply immediately before the mean
date of disturbance, which produces highly synchronous
metamorphosis into the adult stage at a wide range of
body sizes. Conversely, when disturbances are unpredict-
able, individuals do not respond to the disturbance regime,
even though disturbances can produce high mortality
( ; fig. 4). In fact as j increases, the W(T) curvej p 60
becomes identical to the case where disturbances cause no
mortality ( curve; fig. 1). In this situation, there isl p 0
simply no life-history strategy, in terms of age and size at
metamorphosis, that can be used to avoid a highly un-
predictable source of mortality. The sensitivity of this result
to changes in j is explored below.

Disturbance Frequency and Severity

The mean number of disturbances per season (f) and the
expected mortality from a disturbance (l) also influence
size at and timing of metamorphosis. More frequent dis-
turbances produce a greater decline in size at metamor-

phosis before the mean date of disturbance (fig. 5). A
similar pattern occurs when frequency is constant but se-
verity is allowed to vary. Under AM assumptions, the re-
lationship between disturbance frequency and severity is
multiplicative. For this reason, an increase in frequency
can counteract a decrease in severity and vice versa, al-
though severity is bounded between 0 and 1, while fre-
quency can theoretically take on any positive value.

Sensitivity Analysis

According to the model, how predictable must the timing
of disturbances be to induce changes in an organism’s life-
history strategy? Similarly, how frequently must distur-
bances recur to produce a change in an organism’s optimal
maturation strategy? There are no universal answers to
these questions because any answer depends on many in-
itial parameter values. Qualitatively, however, the sensitiv-
ity of the disturbance model predictions to changes in only
one or two parameters can be investigated. The difference
between a “baseline” curve where no disturbances occur
and a curve where disturbances do occur can be quantified
as the sum of squared differences between the two curves.
The sum of squares can be interpreted as a measure of
disturbance regime selection strength because it describes
the degree of difference in optimal phenotype attribut-
able solely to disturbance regime. For individuals in
disturbance-prone habitats, the greater the departure from
this optimum the lower the expected fitness.

Figure 6 shows the relationship between selection
strength ( scale) and variation in disturbance pre-log �1
dictability (j) for organisms with different growth rates.
If body size at maturity is assumed to be fixed, growth
rate can be equated with life span; higher growth rates
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Figure 6: Selection strength versus disturbance predictability for organ-
isms with different growth rates, under arithmetic mean assumptions.
Selection strength measures the degree of difference between the no-
disturbance curve ( curve) and a curve where disturbance is al p 0
factor ( ). Parameter values same as those in figure 1.l 1 0

Figure 7: Selection strength versus disturbance return interval for or-
ganisms with different growth rates, under arithmetic mean assumptions.
Selection strength measures the degree of difference between the no-
disturbance curve and any curve where disturbance occurs. Parameter
values same as those in figure 1.

suggest a shorter life span, and slower growth rates suggest
a longer life span. Sum of squares differences were cal-
culated at daily intervals over the course of the entire
season (from to ). In all cases, selectiont p 0 T p 230C

was strongest when disturbances were more predictable
(low j), but the relative magnitude of selection depended
on the growth rate of the organism. Within the realm of
more predictable disturbances ( d in this example),j ! 40
selection strength roughly doubled with every order of
magnitude increase in growth rate. As disturbances became
unpredictable, selection strength approached 0 regardless
of growth rate, but this happened at much lower values
of j for faster growing organisms. For this reason, slower-
growing organisms were more likely to show evolutionary
responses to highly unpredictable disturbance regimes
than faster-growing organisms.

Selection strength changed in response to disturbance
frequency (shown in fig. 7 as return interval, the reciprocal
of f) in a way qualitatively similar to predictability. In all
cases, selection strength was highest for short return in-
tervals, but as with disturbance predictability, selection
strength was greatest for organisms with slow growth rates.
Under GM assumptions, selection strength was propor-
tionately higher at all return intervals, causing the curves
in figures 6 and 7 to shift upward.

Discussion

Combining disturbance ecology with a model of life-
history evolution generated predictions that are congruent
with well-known theory and data, as well as some novel

predictions. In general, the model showed that life-history
strategies that mitigate the negative fitness effects of dis-
turbances are possible, and these strategies are strongly
influenced by disturbance timing, predictability, frequency,
and severity.

Disturbance Regimes Can Produce Multiple Seasonal
Declines in Body Size at Metamorphosis

The disturbance model predicts that when disturbances
are sufficiently predictable (i.e., j is low relative to the
organism’s life span) and when within-population variance
in juvenile body size is large, a single population will meta-
morphose during two distinct periods. The first period is
associated with the disturbance regime and the second with
seasonal constraints. Multiple peaks of emergence during
a single season have been observed in aquatic insect species
(Vannote and Sweeney 1980; Peckarsky et al. 1993; Moreira
and Peckarsky 1994; Taylor et al. 1998), but this pattern
has been attributed to multi- or semivoltinism of popu-
lations (i.e., two distinct cohorts were thought to have
been observed). Peckarsky et al. (2001) suggested that pat-
terns of body size at emergence observed in a mayfly with
two consecutive cohorts per season were in fact driven by
a biotic disturbance regime, the onset of fish predation.
Since multivoltinism alone can produce two consecutive
emergence groups in the absence of disturbance, care must
be taken in attributing this type of pattern entirely to a
disturbance regime when interpreting field data. From a
modeling perspective, however, the size structure of the
population makes no difference in terms of predicting
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patterns of body size at metamorphosis, and so the dis-
turbance model should work just as well if multiple co-
horts are present.

Disturbance Regimes Can Increase Synchrony of
Metamorphosis While Simultaneously

Increasing Variation in Body
Size at Metamorphosis

Previous theory (Ludwig and Rowe 1990; Rowe and Lud-
wig 1991; Rowe et al. 1994) has shown that time con-
straints can cause organisms to mature over a discrete
period of time, producing a decline in body size at meta-
morphosis. Assuming initial variation in body size within
a population and constant growth rates, time constraints
produce an inverse relationship between variance in time
of metamorphosis and variance in body size at metamor-
phosis (illustrated in fig. 2). Disturbance regimes generate
a similar phenomenon. Disturbance regimes that are suf-
ficiently predictable, cause sufficient mortality, and occur
with sufficient frequency can cause variance in time of
metamorphosis to decrease while variance in body size at
metamorphosis increases. The degree of this inverse re-
lationship depends on the steepness of the W(T) curve
and the amount of size variation initially present in the
population.

While size variation within populations is common,
constant growth rates during development are not always
observed (Gotthard et al. 1999). The distinction between
development rate and growth rate is important here. The
disturbance model, like most other models of optimal size
at and timing of metamorphosis, allows development rate
to vary in response to disturbances or seasonal constraints,
meaning individuals can accelerate ontogeny to mature
earlier. Increasing growth rate involves the accelerated ac-
quisition of resources, often by way of increased foraging
rates (Lima and Dill 1990). Models that allow variable
growth rates predict increased growth rates at the expense
of increasingly risky foraging behavior (Houston et al.
1993; Werner and Anholt 1993; Abrams and Rowe 1996).
Experimental manipulations on several insect taxa (refer-
enced in Johansson and Rowe 1999) have shown that time
constraints accelerate development, which causes individ-
uals to mature earlier and at smaller body sizes. This ob-
servation suggests that flexibility in development rate is
an important variable, although growth rates could also
play a role. To model how disturbances affect life histories
where the assumption of constant growth rates may be
violated, as in some insects (Gotthard et al. 1999) and
amphibians (Wilbur 1987; Semlitsch and Wilbur 1988),
disturbance regimes need to be incorporated into more
sophisticated models that simultaneously optimize timing

of metamorphosis and growth rate (e.g., Abrams et al.
1996).

Coarse-Grained and Fine-Grained Disturbance Regimes
Produce Similar Life Histories Except When

Disturbances Are Severe

The modeling results show that, when disturbance severity
is low or moderate, using either the geometric or arith-
metic mean to estimate fitness results in nearly the same
life history. This is true regardless of disturbance frequency,
predictability, or timing. Thus, population structure, rel-
ative to the spatial scale of disturbances, does not influence
life-history strategies when disturbances cause low or
moderate mortality. Severe coarse-grained disturbances,
however, have a much stronger effect on life-history strat-
egies than do severe fine-grained disturbances. In fact,
when disturbances are coarse-grained and severe, they can
completely override the effects due to seasonal time con-
straints. In these cases, metamorphosis should coincide
entirely with the disturbance regime, and only the smallest
individuals (those below the minimum size for reproduc-
tion) should risk disturbances by remaining in the juvenile
growth habitat.

Slow-Growing Organisms Adapt to Disturbance Regimes
More Readily than Fast-Growing Organisms

Life histories of organisms that have fast growth and ma-
ture quickly do not respond to disturbances as strongly as
slow-growing, long-lived organisms. This finding is con-
gruent with results from earlier studies, which suggest that
disturbances must recur on a timescale comparable to the
organism’s life span to elicit an evolutionary response
(Harper 1977; Lacey et al. 1983; Venable and Brown 1988;
Turner et al. 1998). This occurs because when disturbance
are unpredictable and organisms have rapid growth rates,
the best strategy is always to continue the rapid growth,
even if disturbances are frequent and cause high mortality.
It makes sense that rare or benign disturbances should
have few consequences for adaptive evolution, but there
is no discrete threshold frequency or severity at which this
occurs. Instead, selection strength drops off exponentially
with increasing disturbance return interval, and this re-
lationship depends strongly on the growth rate of the
organism.

Several assumptions made in the model development
may affect the generality of the results presented here.
These include assumptions of logistic growth of individ-
uals, mortality from disturbances only, and no size-
dependent mortality. Equation (3) assumes a fixed upper
limit to growth, and it is possible that nonasymptotic
growth forms might produce different results. Although
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the choice of growth curve can influence optimal strategies
(Day and Taylor 1997; Czarnołęski and Kozłowski 1998),
it is important to note that disturbance regimes cause
metamorphosis even during the exponential phase of
growth trajectories (fig. 2). Thus, although an unrestricted
maximum body size could result in a larger size at met-
amorphosis for some individuals (and, thus, increase pop-
ulation-wide variance in body size at metamorphosis), dis-
turbance should produce at least some decline in body
size for even nonasymptotic growth functions. Distur-
bances in the juvenile growth habitat were assumed to be
the only source of mortality in order to highlight their
effects on life-history strategies. Mortality in the adult hab-
itat would likely diminish the fitness benefits of maturing,
resulting in larger final body sizes and flattening of the
body size/timing of metamorphosis reaction norm (Rowe
and Ludwig 1991; Werner and Anholt 1993). Thus, the
effects of juvenile-habitat disturbance on patterns of body
size at metamorphosis should be reduced as adult mor-
tality increases. For organisms with size-specific mortality
(e.g., John 1964), disturbance regimes should favor meta-
morphosis at smaller body sizes if mortality risk from
disturbances increases with body size. This would occur
because while survivorship for growing individuals de-
creases, survivorship for their small offspring would be
relatively high. The reverse would be true if mortality risk
from disturbances decreases with body size.

Following the example of previous models, the time
constraint on reproduction was included in the distur-
bance model as a continuous function that decreases to 0
at TC, the last day of the reproductive season. In fact, the
end of the reproductive season could also be treated as a
type of disturbance, with a characteristic frequency, timing,
severity, and predictability. This approach would be par-
ticularly suitable for season-ending events, such as the first

winter frost or the drying date of temporary rain pools,
phenomena that are well described by probability dis-
tributions.

Although the disturbance model developed here treats
a specific kind of evolution (evolution of optimal body
size and timing of metamorphosis), some of the model’s
qualitative results may apply to other evolutionary and
ecological scenarios. For example, the disturbance mod-
eling approach could be used to locate the critical range
of disturbance frequencies within which organisms are
likely to adapt to particular disturbance regimes, such as
plants adapting to fire regimes (Christensen 1985). Beyond
this critical range, disturbances may actually exclude taxa
from the system (an ecological effect) rather than drive
evolutionary change of life-history attributes. Broadening
this approach to include other aspects of disturbance (spa-
tial extent, synergistic effects of multiple kinds of distur-
bance) and other evolutionary processes (behavioral,
morphological) could clarify under which conditions dis-
turbance regimes are important for ecology, evolution, or
both.
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APPENDIX

Incorporating Biological Assumptions

From equation (11), optimal body size at metamorphosis under the arithmetic mean assumptions is given by

dE(W(T)) 1 dC(T ) 1R
l[g(T ) � g(T )] � � p 0. (A1)R E dT E(W(T)) dT C(T )R

The term represents the relative gain in fitness, as a function of T. By the chain rule of calculus and by substituting′E /E
equation (3),

dE(W(T)) dE dw dE W
p p rW 1 � . (A2)( )dT dW dt dW k

Under the assumption in equation (4),
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W
brW 1 �( )k

dE(W(T)) 1 when W 1 W ,C{p (A3)W � WC0 otherwise.dT E(W(T))

The /C term represents the relative change in offspring value due to seasonal time constraints on reproduction.′C
Under the assumption in equation (5),

dC(T ) 1 aR # p � . (A4)
dT C(T ) T � TR C R

Assuming that , where f is disturbance frequency and Z(t) is a probability distribution describing theg(t) p fZ(t)
timing of disturbance events within a season (assumed later to be a normal distribution), equation (A1) becomes

W
brW 1 �( )ka

lf[Z(T ) � Z(T )] p � . (A5)R E T � T W � WC R C

The geometric mean form (eq. [17]) can be treated in the same way, and the result differs only in the l term.
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