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Abstract Convergent growth regulation, where individ-
uals adjust their growth trajectories to reach a targeted fi-
nal body size, has been reported for many arthropod
taxa. Divergent growth, where larger individuals grow
proportionately more than smaller individuals, is seldom
observed. Most studies based their conclusions on
growth increment analysis: correlation or regression be-
tween body size at a particular molt and the increment
grown during the next molt. These studies interpreted a
negative relationship as evidence for convergent growth
regulation, since smaller individuals appeared to grow
more during the subsequent molt than larger individuals.
Using random data simulations and an analysis of the
statistics, I demonstrate that autocorrelation in these sta-
tistics generates false evidence for convergent growth,
even when divergent growth actually occurred. I suggest
model II geometric mean (GM) regression as an alterna-
tive method because it does not suffer from these statisti-
cal problems. A GM regression reanalysis of two pub-
lished studies revealed evidence for divergent growth or
no growth regulation in cases where the original studies
reported convergent growth regulation, suggesting that
the reported prevalence of convergent growth may be a
statistical artifact.

Keywords Body size · Autocorrelation · Measurement
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Introduction

Body size is a key attribute of many organisms because
it directly affects their survivorships, fecundities, com-
petitive abilities, and other components of fitness. Be-

cause body size is determined by patterns of growth
throughout an organism’s ontogeny, body size is proxi-
mately a function of both endogenous mechanisms (hor-
mones, physiological constraints, growth-reproduction
tradeoffs) and environmental factors (temperature, re-
source availability, biotic interactions). Of particular in-
terest is whether organisms regulate growth endogenous-
ly in order to reach a targeted final size that is neither too
large nor too small relative to some optimal size (Tanner
1963; Riska et al. 1984; Klingenberg 1996; Twombly
and Tisch 2000). Because many biological models make
the assumption that body size is positively correlated
with fitness (Roff 1992; Stearns 1992), it is important to
know when an organism is inherently constrained to an
intermediate body size.

The most commonly used method of testing for body
size regulation in arthropods is to look for a significant
relationship between pre-molt size and the amount
grown during the subsequent molt stage, a method re-
ferred to here as “growth increment analysis”. Plotted
with molt increment on the y-axis and pre-molt size on
the x-axis, the data can produce a significant (compared
with 0) negative or positive correlation. Most studies
have interpreted a significant negative correlation as evi-
dence that convergent growth regulation (also called tar-
geted growth, compensatory growth, negative feedback,
or simply growth regulation) took place between the two
molts, since smaller individuals appeared to grow more
during the subsequent molt than larger individuals.
Based largely on this method, convergent growth ap-
pears to be widespread among arthropods; it has been re-
ported in decapods (Hartnoll and Dalley 1981), insects
(Tanaka 1981), barnacles (West and Costlow 1987),
crabs (Mohamedeen and Hartnoll 1989), shrimp (Free-
man 1990), and copepods (Twombly and Tisch 2000). In
these studies convergent growth occurred during some
stages but not others: early stages only (West and 
Costlow 1987; Freeman 1990), late stages only (Tanaka
1981), or scattered throughout ontogeny (other studies).
Non-regulated growth, where there was no significant re-
lationship between pre-molt size and molt increment, oc-
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curred in intervening stages. None of these studies re-
ported any significant divergent growth, however, where
larger individuals grew more during a given stage than
smaller ones. This is surprising because studies employ-
ing different statistical methods have observed divergent
growth in at least some stages (Daphnia studied with
path analysis, Lynch 1988; mice studied with variance
component analysis, Riska et al. 1984; water striders
studied with common principal components, Klingen-
berg 1996).

Growth increment analysis differs from these other
statistical methods in at least one important way. Be-
cause molt increment is the difference between post-molt
and pre-molt size, correlations or regressions between
pre-molt size and molt increment are implicitly autocor-
related. For this reason, the null hypothesis that the cor-
relation coefficient r=0 or the slope coefficient b=0 may
not be the appropriate one for testing whether a pattern is
due to random chance versus growth regulation. Here, I

present data suggesting that these tests suffer from auto-
correlation in such a way that even strongly divergent
growth patterns will often be mistaken for convergent
growth. This occurs because small amounts of random
measurement error can combine to produce a negative
correlation or slope when there is actually none present.
Thus, some of the evidence for convergent growth gener-
ated by growth increment analysis may be an artifact of
small measurement errors propagating in a systematic
way to produce pattern from noise.

Methods and results

Random data plots

To gain an intuitive understanding of how plots of pre-
molt size versus molt increment behave statistically,
plots from the literature were compared to plots generat-
ed from random data. Data were obtained from pub-
lished plots for the barnacle Balanus eburneus (Fig. 3B
in West and Costlow 1987, reproduced here as Fig. 1C)
and the copepod Boeckella triarticulata (Fig. 2A in 
Twombly and Tisch 2000, reproduced here as Fig. 1A)
using DataThief version 2.0 (Huyser and van der Laan
1994). Random data were generated by adding measure-
ment error to the mean size at each molt, and these val-
ues were used to calculate molt increment (repeated 50

Fig. 1A–D Plots of pre-molt size versus molt increment using real
and random data. A The copepod Boeckella triarticulata, repro-
duced from Twombly and Tisch (2000). Each correlation is signif-
icantly negative. B Random data based on means from the cope-
pod data. Each correlation is significantly negative. C The barna-
cle Balanus eburneus, reproduced from West and Costlow (1987).
Regressions for stages II–IV are significantly negative. D Random
data based on means from the barnacle data. All regressions are
significantly negative
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times for each plot). Measurement errors were drawn at
random from a normal distribution with mean=0 and
standard deviation equal to 5% of the mean size of the
smallest molt. This simulates absolute measurement er-
ror, where the amount of error is fixed and does not
change relative to the size of the object being measured
(e.g., the same microscope objective is used to mea-
sure size at all molts). Measurement error of 5% was
used for the copepod data because this value was report-
ed for similar-sized nauplii of another copepod species 
(Twombly 1995) and because this is near the accuracy of

the actual data (measurements were taken to the nearest
5 µm); 5% error was also used for the barnacle data. 

Figure 1 compares the random and actual data. For
the copepods the graphs are similar although the actual
data (Fig. 1A) are slightly more dispersed than the ran-
dom data (Fig. 1B). This could be due to natural size
variation in the actual data or to an underestimation of
measurement error in the simulations. Random data us-
ing 8% measurement error produced plots nearly indis-
tinguishable from the actual data. Correlations for the ac-
tual data had been reported as significantly negative,
leading to the conclusion that convergent growth regula-
tion occurred in all stages (Table 1). Correlations for the
random data were also significantly negative (t-test,
df=48, P<0.0001). The actual barnacle data (Fig. 1C)
were qualitatively similar to the random data (Fig. 1D),
although the relationship was more dispersed in later
stages relative to the random data. Significant negative
slopes had been reported for stages II-IV only, leading to
the conclusion that convergent growth occurred during
these stages (Table 2). All five random data slopes were
significantly negative (t-test, df=48, P<0.0001). 

It seems strange that random data could produce such a
clear and significantly negative pattern, but this occurs be-
cause the y-axis (mx+1-mx) implicitly contains the x-
axis (mx). Due to this part-whole relationship, random in-
dependent measurement errors propagate in such a way
that they produce negative correlations. To visualize this,
imagine that because of chance measurement error an indi-
vidual at stage 1 was measured as smaller than its true size.
Even if the subsequent measurement at stage 2 is close to
the true size, the difference m2–m1 will appear unusually
large because it contains the increment actu-ally grown
plus the error in m1. Conversely, m1s that are by chance
measured as larger than the true values will tend to produce
smaller molt increments. Thus, there is an inherent asym-
metry in plots of pre-molt size and molt increment that
tends to generate negative correlations or negative slopes.

Fig. 2 Effect of measurement error on the correlation (r) between
pre-molt size m1 and molt increment. Values of g denote actual
growth patterns excluding measurement error: g>0 represents di-
vergent growth and g<0 is convergent growth. Values of r outside
(–0.279, 0.279, dashed lines), are significantly different from 0;
values of r outside (–0.533, –0.824, shaded area), are significantly
different from –0.7071 (df=48, α=0.05). Under the null hypothesis
that r=0, measurement error tends to generate significantly nega-
tive values of r which lead to the false conclusion that convergent
growth occurred

Table 1 P-values and interpre-
tations of correlations between
pre-molt size and molt incre-
ment (H0: r=0) for the copepod
Boeckella triarticulata (from
Twombly and Tisch 2000), and
a reanalysis using geometric
mean regression on successive
molt sizes (H0: vY·X=1). Sample
sizes differ because not all data
were retrievable from the origi-
nal plots

Stage r n P Conclusion vY·X n t P Conclusion

N2 –0.569 47 0.0001 Convergent 1.27 32 1.18 0.247 No growth reg.
N3 –0.311 47 0.033 Convergent 1.45 33 1.90 0.067 No growth reg.
N4 –0.664 47 0.0001 Convergent 1.02 44 0.13 0.897 No growth reg.
N5 –0.637 47 0.0001 Convergent 0.92 39 –0.52 0.606 No growth reg.
CI –0.607 47 0.0001 Convergent 1.40 36 1.67 0.104 No growth reg.
CII –0.513 47 0.0002 Convergent 1.60 33 2.09 0.045 Divergent
CIII –0.181 47 0.223 Weak conv 1.51 40 2.56 0.015 Divergent
CIV –0.093 47 0.536 Weak conv 1.69 39 2.87 0.007 Divergent
CV –0.432 47 0.003 Convergent 0.99 43 –0.11 0.913 No growth reg.

Table 2 P-values and interpre-
tations of regressions between
pre-molt size and molt incre-
ment (H0: b=0) for the barnacle
Balanus eburneus (from West
and Costlow 1987), and a re-
analysis using geometric mean
regression on successive molt
sizes (H0: vY·X=1)

Stage b n t P Conclusion vY·X t P Conclusion

II –0.89 31 –6.43 <0.05 Convergent 0.76 –1.77 0.089 No growth reg.
III –0.72 37 –2.46 <0.05 Convergent 1.49 1.91 0.065 No growth reg.
IV –0.74 42 –6.44 <0.05 Convergent 0.73 –2.43 0.020 Convergent
V –0.06 42 –1.08 ns No growth reg. 1.44 2.39 0.022 Divergent
VI –0.35 51 –1.08 ns No growth reg. 2.20 3.88 <0.001 Divergent
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How much measurement error is tolerable?

The probability that measurement error will generate
false evidence for regulated growth depends on the
strength of the actual growth pattern relative to the de-
gree of measurement error. Strength of the underlying
growth pattern consists of two parts: the amount of 
within-stage size variation (measurement error of a given
magnitude will have a smaller effect if there is a lot of
“spread” in size) and the amount of growth regulation
that occurs (strong growth regulation, whether divergent
or convergent, will be easier to detect than weak regula-
tion). Growth regulation, as it is interpreted in studies
that used growth increment analysis, can be formalized
by the following equation:

(1)

Eq. 1 describes how the molt increment for an individual
i depends on its pre-molt size mi1. Body size regulation
occurs relative to the mean molt increment m̄2–m̄1, and
the parameter g controls the sign and strength of body
size regulation. When g=0 no growth regulation occurs
because individuals grow a fixed amount regardless of
pre-molt size. Molt increment and pre-molt size will be
uncorrelated in this case. When g<0 convergent growth
regulation occurs because smaller individuals grow more
than larger individuals, producing a negative correlation
between molt increment and pre-molt size. Perfect con-
vergent growth occurs when g=–1 because all individu-
als reach the same size at molt 2 regardless of size at
molt 1. When g>0 divergent growth occurs because indi-
viduals that are large at molt 1 grow more than smaller
individuals, resulting in a positive correlation.

Figure 2 simulates how measurement error affects the
correlation between pre-molt size and molt increment
when the true growth pattern is known. Each simulation
was produced as follows. Pre-molt body sizes (mi1s)
were generated for 50 individuals by drawing them at
random from a normal distribution with mean body size
m̄1=100 units and standard deviation of 10 units. This
represents the initial within-stage size variation. Individ-
uals then grew an increment determined by Eq. 1, with
m̄2=150 and values of g representing strong (±1), inter-
mediate (±0.3), or weak (±0.1) growth regulation. These
pre-molt body sizes and growth increments represent the
underlying values measured without error. Random mea-
surement error (normally distributed with mean=0 and
standard deviation equal to a specified percentage of m̄1)
was added to the actual mi1 and mi2 values to produce ob-
served values. The correlation between observed values
of pre-molt size and molt increment was then calculated.
This was repeated 1000 times at each level of measure-
ment error, and the average value of r was graphed. Lev-
els of measurement error ranged from 0 to 30% of m̄1 in
0.5% increments.

The case where r is significantly different from zero
corresponds to the regions outside the dashed lines in
Fig. 2. It is readily apparent that measurement error often

leads to the erroneous conclusion that no growth regula-
tion, or even convergent growth, occurred when in fact
divergent growth occurred (g>0 lines). This type II error
was worse when growth regulation was weakly diver-
gent; less than 3% error caused the g=0.1 line to become
nonsignificant. Measurement error also caused divergent
growth patterns to appear significantly convergent. Re-
markably, even when actual growth was strongly diver-
gent (g=1), only 15% measurement error produced sig-
nificant negative values of r, suggesting that growth was
convergent. On the other hand, when growth was in fact
convergent (g<0 lines), measurement error did not cause
values of r to deviate from being significantly negative.
Thus, the greatest peril of using the null hypothesis that
r=0 to test for growth regulation is the chance of mistak-
ing divergent growth for convergent growth, not vice
versa.

Expected correlation when no growth regulation occurs

As measurement error increased in the simulations, r
converged on –0.7071. The reason for this is shown by
an examination of the correlation between pre-molt size
and molt increment. The general formula for the correla-
tion between two variables X and Y is

(2)

Because pre-molt size m1 and molt increment m2–m1 are
implicitly related, their correlation is

(3)

(4)

Assuming measurement errors in m2 and m1 are indepen-
dent and equally variable, as measurement error becomes
large relative to the actual pattern in the data
COV(m2,m1)→0 and Eq. 4 collapses to –1/√2

–
. This dem-

onstrates that when random measurement error is high
relative to the underlying pattern in the data, the expect-
ed value of the correlation between pre-molt size and
molt increment approaches –0.7071. It can be shown by
an analogous argument that under the same conditions
the value of a simple linear regression slope coefficient
is –1. This result calls into question the use of the null
model that r or b=0 to test whether a correlation is due to
random chance (versus the alternative hypothesis of be-
ing attributable to growth regulation). Under this null hy-
pothesis, the noisier the data are the lower the resulting
P-value will be – an undesirable property of any test sta-
tistic.

It is important to note that real biological variability
can cause the same problems as measurement error. Be-
cause of this, there is no reliable way to “factor out” the
influence of measurement error from that due to real bio-
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logical processes. This can be seen by partitioning the
observed variances and covariances into components due
to actual biological variability (subscripted a) and to
measurement error (subscripted e):

VAR(m1)=VAR(ma1)+VAR(me1)+2COV(ma1,me1) (5a)

VAR(m2)=VAR(ma2)+VAR(me2)+2COV(ma2,me2) (5b)

COV(m1,m2)=COV(ma1,ma2)+COV(me1,me2)
+COV(ma2,me1)+COV(ma1,me2). (5c)

When measurement errors are independent, which will
typically be the case, the covariance terms containing er-
rors become zero. Substituting actual variances for ob-
served ones into Eq. 4,

Eq. 6 shows that either biological variance or error vari-
ance will produce a highly negative correlation in the ab-
sence of any correlation between m1 and m2. Even with-
out measurement error, if m1 is uncorrelated with m2 and
their variances are equal (e.g., when no growth regula-
tion occurred) Eq. 6 still converges on –0.7071. As with
Eq. 4, this convergence also occurs when measurement
errors predominate. Thus, accounting for measurement
error can only solve some of the autocorrelation prob-
lems associated with correlations between pre-molt size
and molt increment.

Geometric mean regression

An alternative method is to remove autocorrelation by
directly examining the relationship between m1 and m2.
In a regression of m2 on m1, a slope of 1 indicates no
growth regulation, slope >1 indicates divergent growth,
and slope <1 is convergent growth. Although model I re-
gression is clearly not appropriate because it assumes m1
is measured without error (and errors in m1 would cause
the slope to appear less than it actually is), model II re-
gression requires only that the ratio of error variances in
m1 and m2 remain constant – an assumption that will be
met for absolute measurement error. In model II geomet-
ric mean (GM) regression, the variables are standardized
and the slope of their principal axis is computed (Ricker
1973; Sokal and Rohlf 1995). In practice this slope, vY·X,
is simply the ratio of the standard deviations, sy/sx. This
ratio makes biological sense, because if convergent
growth is occurring the variance in m2 should be reduced
relative to the variance in m1. The null hypothesis that
vY·X=1 can be used to test for growth regulation. GM re-
gression has the advantage that as measurement errors
become large relative to the actual pattern, vY·X converg-
es on 1 and the null hypothesis is not rejected.

Tables 1, 2 show a reanalysis of the copepod and bar-
nacle data using GM regression. GM regression suggests
no evidence for growth regulation in all but three cope-
pod molt stages, and these are cases of divergent rather
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than convergent growth. Similarly, no growth regulation
was detected in early barnacle stages, but both conver-
gent and divergent growth occurred in later stages. The
conclusions reached using GM regression are almost ex-
actly opposite those reached using molt increment statis-
tics, and suggest that at least for these taxa convergent
growth is the exception rather than the rule.

Discussion

The findings presented here suggest that negative rela-
tionships between pre-molt size and molt increment do
not provide reliable evidence for convergent growth reg-

ulation. This was demonstrated in three ways. First, sim-
ulations using random data consistently produced signif-
icant negative correlations and regressions very similar
to patterns reported in the literature. Second, simulations
demonstrated that even modest degrees of measurement
error can generate a significant negative correlation
when the actual correlation is positive. Third, an analysis
of the correlation and regression coefficients used in
these tests showed that highly negative values are ex-
pected a priori when the pattern-to-noise ratio in the data
is low.

Given these properties it is no surprise that studies us-
ing growth increment analysis consistently found con-
vergent growth. Conversely, the lack of evidence for di-
vergent growth is suspicious since even strongly diver-
gent growth patterns often appeared convergent when the
r or b=0 null hypothesis was employed. Because a re-
analysis of the copepod and barnacle data using geomet-
ric mean regression suggested that convergent growth
was rare, it is possible that similar results might emerge
from reanalysis of other studies.

Other studies have demonstrated that the expected
correlation between two variables related by a part-
whole relationship is non-zero. The study of allometric
growth relationships has received the most attention
(Pearson 1897; Atchley et al. 1976, and the ensuing 
debate in Systematic Zoology 27(1); Packard and 
Boardman 1988), but the problem has also come up 
in hydrology (Yalin and Kamphuis 1971), limnology 
(Kenney 1982), and community ecology (Weller 1987;
Prairie and Bird 1989; Jackson 1997). Although some
authors recognize that the study of these part-whole rela-
tionships can be useful so long as the autocorrelation is
explicitly recognized, it is generally agreed that mea-
surement error poses an especially serious problem for
these statistics (Prairie and Bird 1989; Rayner 1985).

Aside from GM regression, other related statistical
methods may be useful for analyzing growth increment
data. When measurement errors are correlated, a more
general form of GM regression may be used (the general
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structural relation, Rayner 1985). Klingenberg (1996)
used common principal components (Klingenberg et al.
1996) to analyze individual growth data in water striders.
Although this study did not account for measurement er-
ror, the method did account explicitly for patterns gener-
ated by the part-whole relationships inherent to ontoge-
netic data. As a result, the study found some evidence
for convergent growth in early stages and divergent
growth in later stages. The path analysis method devel-
oped by Lynch (1988) deals with measurement error di-
rectly. The method partitions variance within each molt
increment into biological and measurement error compo-
nents. When measurement errors are known (i.e., when
multiple measurements are taken for each observation)
they can be factored out of the analysis. Applying this
technique to Daphnia growth data, Lynch found that
even though measurement error was very low (around
1%), when not accounted for it greatly affected values of
path coefficients, although the qualitative conclusions of
the study were not altered. The analysis found evidence
for both convergent and divergent growth.

Two major points emerge from the findings in this
study. First, statistics that relate growth increments to
size at a particular stage should be used with extreme
caution, or avoided entirely when other methods can be
used instead. Second, a careful accounting of measure-
ment error should be part of any study that examines
growth patterns throughout ontogeny. Until these issues
are addressed, the prevalence and direction of growth
regulation in arthropods will remain obscure.
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