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Abstract This paper describes a computer vision
approach to automated rapid-throughput taxonomic identi-
fication of stonefly larvae. The long-term objective of this
research is to develop a cost-effective method for environ-
mental monitoring based on automated identification of indi-
cator species. Recognition of stonefly larvae is challenging
because they are highly articulated, they exhibit a high degree
of intraspecies variation in size and color, and some spe-
cies are difficult to distinguish visually, despite prominent
dorsal patterning. The stoneflies are imaged via an appa-
ratus that manipulates the specimens into the field of view
of a microscope so that images are obtained under highly
repeatable conditions. The images are then classified through
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aprocess that involves (a) identification of regions of interest,
(b) representation of those regions as SIFT vectors (Lowe,
in Int J Comput Vis 60(2):91-110, 2004) (c) classification
of the SIFT vectors into learned “features” to form a histo-
gram of detected features, and (d) classification of the feature
histogram via state-of-the-art ensemble classification algo-
rithms. The steps (a) to (c) compose the concatenated feature
histogram (CFH) method. We apply three region detectors
for part (a) above, including a newly developed principal
curvature-based region (PCBR) detector. This detector finds
stable regions of high curvature via a watershed segmentation
algorithm. We compute a separate dictionary of learned
features for each region detector, and then concatenate the
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histograms prior to the final classification step. We evaluate
this classification methodology on a task of discriminating
among four stonefly taxa, two of which, Calineuria and
Doroneuria, are difficult even for experts to discriminate. The
results show that the combination of all three detectors gives
four-class accuracy of 82% and three-class accuracy (pooling
Calineuria and Doro-neuria) of 95%. Each region detector
makes a valuable contribution. In particular, our new PCBR
detector is able to discriminate Calineuria and Doroneuria
much better than the other detectors.

Keywords Classification - Object recognition -
Interest operators - Region detectors - SIFT descriptor

1 Introduction

There are many environmental science applications that could
benefit from inexpensive computer vision methods for
automated population counting of insects and other small
arthropods. At present, only a handful of projects can jus-
tify the expense of having expert entomologists manually
classify field-collected specimens to obtain measurements of
arthropod populations. The goal of our research is to develop
general-purpose computer vision methods, and associated
mechanical hardware, for rapid-throughput image capture,
classification, and sorting of small arthropod specimens. If
such methods can be made sufficiently accurate and inex-
pensive, they could have a positive impact on environmental
monitoring and ecological science [9,15,18].

The focus of our initial effort is the automated recogni-
tion of stonefly (Plecoptera) larvae for the biomonitoring
of freshwater stream health. Stream quality measurement
could be significantly advanced if an economically practi-
cal method were available for monitoring insect populations
in stream substrates. Population counts of stonefly larvae
and other aquatic insects inhabiting stream substrates are
known to be a sensitive and robust indicator of stream health
and water quality [17]. Because these animals live in the
stream, they integrate water quality over time. Hence, they
provide a more reliable measure of stream health than single-
time-point chemical measurements. Aquatic insects are espe-
cially useful as biomonitors because (a) they are found in
nearly all running-water habitats, (b) their large species diver-
sity offers a wide range of responses to water quality change,
(c) the taxonomy of most groups is well known and iden-
tification keys are available, (d) responses of many species
to different types of pollution have been established, and
(e) data analysis methods for aquatic insect communities are
available [6]. Because of these advantages, biomonitoring
using aquatic insects has been employed by federal, state,
local, tribal, and private resource managers to track changes
inriver and stream health and to establish baseline criteria for
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water quality standards. Collection of aquatic insect samples
for biomonitoring is inexpensive and requires relatively lit-
tle technical training. However, the sorting and identification
of insect specimens can be extremely time consuming and
requires substantial technical expertise. Thus, aquatic insect
identification is a major technical bottleneck for large-scale
implementation of biomonitoring.

Larval stoneflies are especially important for biomonitor-
ing because they are sensitive to reductions in water quality
caused by thermal pollution, eutrophication, sedimentation,
and chemical pollution. On a scale of organic pollution
tolerance from 0 to 10, with 10 being the most tolerant,
most stonefly taxa have a value of 0, 1, or 2 [17]. Because
of their low tolerance to pollution, change in stonefly abun-
dance or taxonomic composition is often the first indication
of water quality degradation. Most biomonitoring programs
identify stoneflies to the taxonomic resolution of family,
although when expertise is available genus-level (and
occasionally species-level) identification 1is possible.
Unfortunately, because of constraints on time, budgets, and
availability of expertise, some biomonitoring programs fail
to resolve stoneflies (as well as other taxa) below the level
of order. This results in a considerable loss of information
and, potentially, in the failure to detect changes in water
quality.

Besides its practical importance, the automated identifica-
tion of stoneflies raises many fundamental computer
vision challenges. Stonefly larvae are highly articulated
objects with many sub-parts (legs, antennae, tails, wing pads,
etc.) and many degrees of freedom. Some taxa exhibit inter-
esting patterns on their dorsal sides, but others are not pat-
terned. Some taxa are distinctive; others are very difficult to
identify. Finally, as the larvae repeatedly molt, their size and
color change. Immediately after molting, they are light col-
ored, and then they gradually darken. This variation in size,
color, and pose means that simple computer vision methods
that rely on placing all objects in a standard pose cannot
be applied here. Instead, we need methods that can handle
significant variation in pose, size, and coloration.

To address these challenges, we have adopted the bag-of-
features approach [8,10,32]. This approach extracts a bag
of region-based “features” from the image without regard
to their relative spatial arrangement. These features are then
summarized as a feature vector and classified via state-of-
the-art machine learning methods. The primary advantage
of this approach is that it is invariant to changes in pose and
scale as long as the features can be reliably detected. Further-
more, with an appropriate choice of classifier, not all features
need to be detected in order to achieve high classification
accuracy. Hence, even if some features are occluded or fail
to be detected, the method can still succeed. An additional
advantage is that only weak supervision (at the level of entire
images) is necessary during training.
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A potential drawback of this approach is that it ignores
some parts of the image, and hence loses some potentially
useful information. In addition, it does not capture the spatial
relationships among the detected regions. We believe that this
loss of spatial information is unimportant in this application
because all stoneflies share the same body plan and, hence,
the spatial layout of the detected features provides very little
discriminative information.

The bag-of-features approach involves five phases:
(a) region detection, (b) region description, (c) region clas-
sification into features, (d) combination of detected features
into a feature vector, and (e) final classification of the fea-
ture vector. For region detection, we employ three different
interest operators: (a) the Hessian-affine detector [29], (b) the
Kadir entropy detector [21], and (c) a new detector that we
have developed called the principal curvature-based region
detector (PCBR). The combination of these three detectors
gives better performance than any single detector or pair of
detectors. The combination was critical to achieving good
classification rates.

All detected regions are described using Lowe’s SIFT
representation [25]. At training time, a Gaussian mixture
model (GMM) is fit to the set of SIFT vectors, and each
mixture component is taken to define a feature. The GMM
can be interpreted as a classifier that, given a new SIFT
vector, can compute the mixture component most likely to
have generated that vector. Hence, at classification time, each
SIFT vector is assigned to the most likely feature (i.e., mix-
ture component). A histogram consisting of the number of
SIFT vectors assigned to each feature is formed. A separate
GMM, set of features, and feature vector is created for each
of the three region detectors and each of the stonefly taxa.
These feature vectors are then concatenated prior to classi-
fication. The steps mentioned above form the concatenated
feature histogram (CFH) method, which allows the use of
general classifiers from the machine learning literature. The
final labeling of the specimens is performed by an ensem-
ble of logistic model trees [23], where each tree has one
vote.

The rest of the paper is organized as follows. Section 2 dis-
cusses existing systems for insect recognition as well as rel-
evant work in generic object recognition in computer vision.
Section 3 introduces our PCBR detector and its underlying
algorithms. In Sect. 4, we describe our insect recognition
system including the apparatus for manipulating and photo-
graphing the specimens and the algorithms for feature extrac-
tion, learning, and classification. Section 5 presents a series
of experiments to evaluate the effectiveness of our classifi-
cation system and discusses the results of those experiments.
Finally, Sect. 6 draws some conclusions about the overall
performance of our system and the prospects for rapid-
throughput insect population counting.

2 Related work

We divide our discussion of related work into two parts.
First, we review related work in insect identification systems.
Then we discuss work in generic object recognition.

2.1 Automated insect identification systems

A few other research groups have developed systems that
apply computer vision methods to discriminate among a
defined set of insect species.

2.1.1 Automated bee identification system

The Automated bee identification system (ABIS) [1] per-
forms identification of bees from forewings features. Each
bee is manually positioned and a photograph of its forewing is
obtained in a standard pose. From this image, the wing vena-
tion is identified, and a set of key wing cells (areas between
veins) are determined. These are used to align and scale the
images. Then geometric features (lengths, angles, and areas)
are computed. In addition, appearance features are computed
from small image patches that have been normalized and
smoothed. Classification is performed using support vector
machines and kernel discriminant analysis.

This project has obtained very good results, even when dis-
criminating between bee species that are known to be hard to
classify. It has also overcome its initial requirement of expert
interaction with the image for feature extraction; although it
still has the restriction of complex user interaction to manip-
ulate the specimen for the capture of the wing image. The
ABIS feature extraction algorithm incorporates prior expert
knowledge about wing venation. This facilitates the bee clas-
sification task; but makes it very specialized. This specializa-
tion precludes a straightforward application to other insect
identification tasks.

2.1.2 Digital automated identification system

Digital automated identification system (DAISY) [31] is a
general-purpose identification system that has been applied
to several arthropod identification tasks including mosqui-
toes (Culex p. molestus vs. Culex p. pipiens), palaeartic
ceratopogonid biting midges, ophionines (parasites of
lepidoptera), parasitic wasps in the genus Enicospilus, and
hawk-moths (Sphingidae) of the genus Xylophanes. Unlike
our system, DAISY requires user interaction for image cap-
ture and segmentation, because specimens must be aligned
in the images. This might hamper DAISY’s throughput and
make its application infeasible in some monitoring tasks
where the identification of large samples is required.
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In its first version, DAISY built on the progress made in
human face detection and recognition via eigen-images [41].
Identification proceeded by determining how well a specimen
correlated with an optimal linear combination of the princi-
pal components of each class. This approach was shown to
be too computationally expensive and error-prone.

In its second version, the core classification engine is
based on a random n-tuple classifier (NNC) [26] and plas-
tic self-organizing maps (PSOM). It employs a pattern to
pattern correlation algorithm called the normalized vector
difference (NVD) algorithm. DAISY is capable of handling
hundreds of taxa and delivering the identifications in sec-
onds. It also makes possible the addition of new species
with only a small computational cost. On the other hand,
the use of NNC imposes the requirement of adding enough
instances of each species. Species with high intra-class var-
iability require many training instances to cover their whole
appearance range.

2.1.3 Species identification, automated and web accessible

Species identification, automated and web accessible
(SPIDA)-web [9] is an automated species identification sys-
tem that applies neural networks to wavelet encoded images.
The SPIDA-web prototype has been tested on the spider fam-
ily Trochanteriidae (119 species in 15 genera) using images
of the external genitalia.

SPIDA-web’s feature vector is built from a subset of the
components of the wavelet transform using the Daubechines
4 function. The spider specimen has to be manipulated by
hand, and the image capture, preprocessing and region selec-
tion also require direct user interaction. The images are ori-
ented, normalized, and scaled into a 128 x 128 square prior
to analysis. The specimens are classified in a hierarchical
manner, first to genus and then to species. The classifica-
tion engine is composed of a trained neural network for each
species in the group. Preliminary results for females indi-
cate that SPIDA is able to classify images to genus level with
95-100% accuracy. The results of species-level classification
still have room for improvement; most likely due to the lack
of enough training samples.

2.1.4 Summary of previous insect identification work

This brief review shows that existing approaches rely on man-
ual manipulation and image capture of each specimen. Some
systems also require the user to manually identify key image
features. To our knowledge, no system exists that identifies
insects in a completely automated way, from the manipu-
lation of the specimens to the final labeling. The objective
of our research is to achieve full rapid-throughput automa-
tion, which we believe is essential to supporting routine bio-
monitoring activities. One key to doing this is to exploit
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recent developments in generic object recognition, which we
now discuss.

2.2 Generic object recognition

The past decade has seen the emergence of new approaches
to object-class recognition based on region detectors, local
features, and machine learning. Current methods are able
to perform object recognition tasks in images taken in non-
controlled environments with variability in the position and
orientation of the objects, with cluttered backgrounds, and
with some degree of occlusion. Furthermore, these methods
only require supervision at the level of whole images—the
position and orientation of the object in each training image
does not need to be specified. These approaches compare
favorably with previous global-feature approaches, for exam-
ple [34,40].

The local feature approaches begin by applying an inter-
est operator to identify “interesting regions”. These regions
must be reliably detected in the sense that the same region
can be found in images taken under different lighting condi-
tions, viewing angles, and object poses. Further, for generic
object recognition, these detected regions must be robust to
variation from one object to another within the same generic
class. Additionally, the regions must be informative—that
is, they must capture properties that allow objects in differ-
ent object classes to discriminate from one another. Special
effort has been put into the development of affine-invariant
region detectors to achieve robustness to moderate changes in
viewing angle. Current affine-invariant region detectors can
be divided into two categories: intensity-based detectors and
structure-based detectors. The intensity-based region detec-
tors include the Harris-corner detector [16], the Hessian-
affine detector [28,29], the maximally stable extremal region
detector (MSER) [27], the intensity extrema-based region
detector (IBR) [42], and the entropy-based region detector
[21]. Structure-based detectors include the edge-based region
detector (EBR) [43] and the scale-invariant shape feature
(SISF) detector [19].

Upon detection, each region must then be characterized
as a vector of features. Several methods have been employed
for this purpose, but by far the most widely-used region
representation is David Lowe’s 128-dimensional SIFT
descriptor [25], which is based on histograms of local inten-
sity gradients. Other region descriptors can be computed
including image patches (possibly after smoothing and down-
sampling), photometric invariants, and various intensity sta-
tistics (mean, variance, skewness, and kurtosis).

Once the image has been converted into a collection of
vectors—where each vector is associated with a particu-
lar region in the image—two general classes of methods
have been developed for predicting the object class from
this information. The first approach is known as the “bag
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of features” approach, because it disregards the spatial
relationships among the SIFT vectors and treats them as an
un-ordered bag of feature vectors. The second approach is
known as the “constellation method”, because it attempts
to capture and exploit the spatial relationships among the
detected regions. (Strictly speaking, the term constellation
model refers to the series of models developed by Burl, Weber
and Perona [5].)

In the bag-of-features approach, the standard method is to
take all of the SIFT vectors from the training data and cluster
them (possibly preceded by a dimensionality-reduction step
such as PCA). Each resulting cluster is taken to define a “key-
word”, and these keywords are collected into a codebook or
dictionary [7,11,20]. The dictionary can then be applied to
map each SIFT vector into a keyword, and therefore, to map
the bag of SIFT features into a bag of keywords.

The final step of our approach is to train a classifier to
assign the correct class label to the bag of keywords. The
most direct way to do this is to convert the bag into a feature
vector and apply standard machine learning methods such as
AdaBoost [13]. One simple method is to compute a histo-
gram where the i-th element corresponds to the number of
occurrences in the image of the i-th keyword.

Another classification strategy is to employ distance-based
learning algorithms such as the nearest-neighbor method.
This involves defining a distance measure between two bags
of keywords such as the minimum distance between all key-
words from one bag and all keywords from the other bag.

Given a new image to classify, the process of finding inter-
esting regions, representing them as SIFT vectors, mapping
those to keywords, and classifying the resulting bags of key-
words is repeated.

In the constellation method, several techniques have been
applied for exploiting the spatial layout of the detected
regions. The star-shaped model [24,37] is a common choice,
because it is easy to train and evaluate. Fergus et al. [12]
employ a generative model of the (x, y) distribution of the
regions as a two-dimensional Gaussian distribution. More
complex methods apply discriminative graphical models to
capture the relations between the detected regions [2,22,35].

3 Principal curvature-based region detector

Before describing our stonefly recognition system, we first
introduce our new principal curvature-based region (PCBR)
detector. This detector is of independent interest and we have
demonstrated elsewhere that it can be applied to a wide range
of object recognition problems [45].

The PCBR detector grew out of earlier experiments that
apply Steger’s “curvilinear” detector [39] to the stonefly
images. The curvilinear detector finds line structures (either
curved or straight) such as roads in aerial or satellite images
or blood vessels in medical scans. When applied to stonefly

images, the detector provides a kind of sketch of the char-
acteristic patterning that appears on the insects’ dorsal side.
Further, these curvilinear structures can be detected over a
range of viewpoints, scales, and illumination changes.

However, in order to produce features that readily map to
image regions, which can then be used to build a descrip-
tor (such as SIFT), our PCBR detector ultimately uses only
the first steps of Steger’s curvilinear detector process—that
of computing the principal eigenvalue of the Hessian matrix
at each pixel. We note that since both the Hessian matrix
and the related second moment matrix quantify a pixel’s
local image geometry, they have also been applied in several
other interest operators such as the Harris [16], Harris-affine
[30], and Hessian-affine [29] detectors to find image posi-
tions where the local image geometry is changing in more
than one direction. Likewise, Lowe’s maximal difference-of-
Gaussian (DoG) detector [25] also uses components of the
Hessian matrix (or at least approximates the sum of the diag-
onal elements) to find points of interest. However, we also
note that our PCBR detector is quite different from these other
methods. Rather than finding interest “points”, our method
applies a watershed segmentation to the principal curvature
image to find “regions” that are robust to various image trans-
formations. As such, our PCBR detector combines differen-
tial geometry—as used by the Harris—and Hessian-affine
interest point detectors with concepts found in region-based
structure detectors such as EBR [43] or SISF [19].

3.1 A curvature-based region detector

Given an input image (Fig. 1a), our PCBR region detector
can be summarized as follows:

1. Compute the Hessian matrix image describing each
pixel’s local image curvature.

2. Form the principal curvature image by extracting the
largest positive eigenvalue from each pixel’s Hessian
matrix (Fig. 1b).

3. Apply a gray scale morphological closing on the princi-
pal curvature image to remove noise and threshold the
resulting image to obtain a “clean” binary principal cur-
vature image (Fig. 1c).

4. Segment the clean image into regions using the water-
shed transform (Figs. 1d, e).

5. Fit an ellipse to each watershed regions to produce the
detected interest regions (Fig. 1f).

Each of these steps is detailed in the following.

3.2 Principal curvature image

There are two types of structures that have high curvature
in one direction: edges and curvilinear structures. Viewing
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Fig. 1 Regions defined by
principal curvature. a The
original, b principal curvature,
and c cleaned binary images.
The resulting d boundaries and
e regions that result by applying (a)
the watershed transform to c.

f The final detected regions

created by fitting an ellipse to

each region

(d)

an image as an intensity surface, the curvilinear structure
detector looks for ridges and valleys of this surface. These
correspond to white lines on black backgrounds or black lines
on white backgrounds. The width of the detected line is deter-
mined by the Gaussian scale used to smooth the image (see
Eq. 1 below). Ridges and valleys have large curvature in one
direction, edges have high curvature in one direction and
low curvature in the orthogonal direction, and corners (or
highly curved ridges and valleys) have high curvature in two
directions. The shape characteristics of the surface can be
described by the Hessian matrix, which is given by

ey

H(x,op) = |:Ixx (x, 0p) Lyxy(x, UD)]

Lyy (x,0p) Lyy (x,0p)

where Iy, I,y and I,y are the second-order partial derivatives
of the image and op is the Gaussian scale at which the sec-
ond partial derivatives of the image are computed. The inter-
est point detectors mentioned previously [16,29,30] apply
the Harris measure (or a similar metric [25]) to determine a
point’s saliency. The Harris measure is given by

det(A) — k - tr>(A) > threshold )

where det is the determinant, tr is the trace, and the matrix
A is either the Hessian matrix, H, (for the Hessian-affine
detector) or the second moment matrix,

12 1.1
M=| * ”] 3)
|:1ny Iy2

for the Harris or Harris-affine detectors. The constant k is
typically between 0.03 and 0.06 with 0.04 being very com-
mon. The Harris measure penalizes (i.e., produces low values
for) “long” structures for which the first or second derivative
in one particular orientation is very small. One advantage of
the Harris metric is that it does not require explicit computa-
tion of the eigenvalue or eigenvectors. However, computing
the eigenvalues and eigenvectors for a 2 x 2 matrix requires
only a single Jacobi rotation to eliminate the off-diagonal
term, Iy, as noted by Steger [39].
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Our PCBR detector complements the previous interest
point detectors. We abandon the Harris measure and exploit
those very long structures as detection cues. The principal
curvature image is given by either

P(x) = max(11(x), 0) “
or
P(x) = min(A2(x), 0) &)

where A{(x) and Ay(x) are the maximum and minimum
eigenvalues, respectively, of H at x. Equation 4 provides
a high response only for dark lines on a light background (or
on the dark side of edges) while Eq. 5 is used to detect light
lines against a darker background. We do not take the largest
absolute eigenvalue since that would produce two responses
for each edge. For our stonefly project, we have found that the
patterning on the stonefly dorsal side is better characterized
by the dark lines and as such we apply Eq. 4. Figure 1b shows
an eigenvalue image that results from applying Eq. 4 to the
grayscale image derived from Fig. 1a. We utilize the princi-
ple curvature image to find the stable regions via watershed
segmentation [44].

3.3 Watershed segmentation

Our detector depends on a robust watershed segmentation.
A main problem with segmentation via the watershed trans-
form is its sensitivity to noise and image variations. Figure 2a
shows the result of applying the watershed algorithm directly

(a) (b)

Fig. 2 a Watershed segmentation of original eigenvalue image
(Fig. 1b). b Detection results using the “clean” principal curvature image
(Fig. Ic)



Automated insect identification through concatenated histograms of local appearance features

to the eigenvalue image (shown in Fig. 1b). Many of the small
regions are due to noise or other small, unstable image varia-
tions. To achieve a more stable watershed segmentation, we
first apply a grayscale morphological closing followed by
hysteresis thresholding. The grayscale morphological clos-
ing operation is defined as

feb=(f®db)Sb 6)

where f is the image (P from Eq. 4 for our application),
b is a disk-shaped structuring element, and @ and © are
the grayscale dilation and erosion, respectively. The clos-
ing operation removes the small “potholes” in the principal
curvature terrain, thus eliminating many local minima that
result from noise and would otherwise produce watershed
catchment basins.

However, beyond the small (in terms of area of influence)
local minima, there are other minima that have larger zones of
influence and are not reclaimed by the morphological closing.
Some of these minima should indeed be minima since they
have a very low principal curvature response. However, other
minima have a high response but are surrounded by even
higher peaks in the principle curvature terrain. A primary
cause for these high “dips” between ridges is that the Gauss-
ian scale used to compute the Hessian matrix is not large
enough to match the thickness of the line structure; hence,
the second derivative operator produces principal curvature
responses that tend toward the center of the thick line but
don’t quite meet up. One solution to this problem is to use
a multiscale approach and try to estimate the best scale to
apply at each pixel. Unfortunately, this would require that
the Hessian be applied at many scales to find the single char-
acteristic scale for each pixel. Instead, we choose to compute
the Hessian at just a few scales (op = 1, 2, 4) and then use
eigenvector-flow hysteresis thresholding to fill in the gaps
between scales.

For eigenvalue-flow hysteresis thresholding we have a
high and a low threshold—just as in traditional hysteresis
thresholding. For this application, we have set the high thresh-
old at 0.04 to indicate strong principal curvature response.
Pixels with a strong response act as seeds that expand out
to include connected pixels that are above the low threshold.
Unlike traditional hysteresis thresholding, our low threshold
is a function of the support each pixel’s major eigenvector
receives from neighboring pixels. Of course, we want the
low pixel to be high enough to avoid over-segmentation and
low enough to prevent ridge lines from fracturing. As such,
we choose our low threshold on a per-pixel basis by compar-
ing the direction of the major (or minor) eigenvector to the
direction of the adjacent pixels’ major (or minor) eigenvec-
tors. This can be done by simply taking the absolute value of
the inner (or dot) product of a pixel’s normalized eigenvector
with that of each neighbor. The inner product is 1 for vectors

Fig. 3 Illustration of how the eigenvector flow is used to support weak
principal curvature response

pointing in the same direction and O for orthogonal vectors. If
the average dot product over all neighbors is high enough, we
set the low to high threshold ratio to 0.2 (giving an absolute
threshold of 0.04 x 0.2 = 0.008); otherwise the low to high
ratio is 0.7 (for an absolute low threshold of 0.028). These
ratios were chosen based on experiments with hundreds of
stonefly images.

Figure 3 illustrates how the eigenvector flow supports an
otherwise weak region. The small white arrows represent the
major eigenvectors To improve visibility, we draw them at
every four pixels. At the point indicated by the large white
arrow, we see that the eigenvalue magnitudes are small and
the ridge there is almost invisible. Nonetheless, the direction
of the eigenvectors are quite uniform. This eigenvector-based
active thresholding process yields better performance in
building continuous ridges and in filling in scale gaps between
ridges, which results in more stable regions (Fig. 2b).

The final step is to perform the watershed transform on the
clean binary image. Since the image is binary, all black (or
0-valued) pixels become catchment basins and the midline of
the thresholded white ridge pixels potentially become water-
shed lines if it separates two distinct catchment basins. After
performing the watershed transform, the resulting segmented
regions are fit with ellipses, via PCA, that have the same
second-moment as these watershed regions. These ellipses
then define the final interest regions of the PCBR detector
(Fig. 1f).

4 Stonefly identification system

The objective of our work is to provide a rapid-throughput
system for classifying stonefly larvae to the species level.
To achieve this, we have developed a system that combines
a mechanical apparatus for manipulating and photograph-
ing the specimens with a software system for processing and
classifying the resulting images. We now describe each of
these components in turn.
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Fig. 4 a Prototype mirror and
transportation apparatus.

b Entire stonefly transportation
and imaging setup (with a
microscope and an attached
digital camera, light boxes, and
computer controlled pumps for
transporting and rotating the
specimen

4.1 Semi-automated mechanical manipulation and imaging
of stonefly larvae

The purpose of the hardware system is to speed up the image
capture process in order to make bio-monitoring viable and
to reduce variability during image capture. To achieve con-
sistent, repeatable image capture, we have designed and con-
structed a software-controlled mechanical stonefly larval
transport and imaging apparatus that positions specimens
under a microscope, rotates them to obtain a dorsal view,
and photographs them with a high-resolution digital camera.

Figure 4 shows the mechanical apparatus. The stoneflies
are kept in alcohol (70% ethanol) at all times, and there-
fore, the apparatus consists of two alcohol reservoirs
connected by an alcohol-filled tube (having a diamond cross-
section). To photograph a specimen, it is manually inserted
into the arcylic well shown at the right edge of the figure
and then pumped through the tube. Infrared detectors posi-
tioned part way along the tube detect the passage of the
specimen and cut off the pumps. Then a side fluid jet “cap-
tures” the specimen in the field of view of the microscope.
When power to this jet is cut off, the specimen settles to
the bottom of the tube where it can be photographed. The
side jet can be activated repeatedly to spin the specimen
to obtain different views. Once a suitable image has been
obtained (a decision currently made by the human operator),
the specimen is then pumped out of the tube and into the
plexiglass well at the left edge of the figure. For this project,
a “suitable image” is one that gives a good back (dorsal side)
view of the specimen. In future work, we plan to construct
a “dorsal view detector” to automatically determine when
a good dorsal image has been obtained. In addition, future
versions of the apparatus will physically sort each specimen
into an appropriate bin based on the output of the recog-
nizer.

Figure 4b shows the apparatus in place under the micro-
scope. Each photograph taken by the camera captures two
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images at a 90° separation via a set of mirrors. The origi-
nal purpose of this was to support 3D reconstruction of the
specimens, but for the work described in this paper, it dou-
bles the probability of obtaining a good dorsal view in each
shot.

All images are captured using a QImaging MicroPub-
lisher 5.0 RTV 5 megapixel color digital camera. The dig-
ital camera is attached to a Leica MZ9.5 high-performance
stereo microscope at 0.63x magnification. We use a 0.32
objective on the microscope to increase the field of view,
depth of field, and working distance. Illumination is pro-
vided by gooseneck light guides powered by Volpi V-Lux
1000 cold light sources. Diffusers installed on the guides
reduce glare, specular reflections, and hard shadows. Care
was taken in the design of the apparatus to minimize the cre-
ation of bubbles in the alcohol, as these could confuse the
recognizer.

With this apparatus, we can image a few tens of specimens
per hour. Figure 6 shows some example images obtained
using this stonefly imaging assembly.

4.2 Training and classification

Our approach to classification of stonefly larvae follows
closely the “bag of features” approach but with several mod-
ifications and extensions. Figure 5 gives an overall picture of
the data flow during training and classification, and
Tables 1, 2, and 3 provide pseudo-code for our method. We
now provide a detailed description.

The training process requires two sets of images, one for
defining the dictionaries and one for training the classifier. In
addition, to assess the accuracy of the learned classifier, we
need a holdout test data set. Therefore, we begin by partition-
ing the data at random into three subsets: clustering, training,
and testing.
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classification components

Table 1 Dictionary construction; D is the number of region detectors
(3 in our case), and K is the number of stonefly taxa to be recognized
(4 in our case)

Dictionary construction

For each detectord =1,..., D
Foreachclassk=1,..., K
Let Sy« be the set of SIFT vectors that results
from applying detector d to all cluster images from

class k
Fit a Gaussian mixture model to Sy x to obtain a
set of mixture components {Cy ¢}, £ =1,...,L

The GMM estimates the probability of each SIFT

vector s € Sy x as
L

P(s) =D Cakiels|pare Tar.e)PE)
(=1
where Cy k¢ is a multi-variate Gaussian
distribution with mean 4 k¢ and diagonal covariance
matrix Ed,qu

Define the keyword mapping function
keya i (s) = argmax, Cq,e(S| idk.e, Xd,k,e)

As mentioned previously, we apply three region detectors
to each image: (a) the Hessian-affine detector [29], (b) the
Kadir Entropy detector [21], and (c) our PCBR detector.

Table 2 Feature vector construction

Feature vector construction

To construct a feature vector for an image:
For each detectord =1,..., D
Foreachclassk =1,..., K
Let Hy i be the keyword histogram for detector d
and class k
Initialize Hy ¢ [€] =0foré =1,...,L
For each SIFT vector s detected by detector d
increment Hy i[keyq i ()]
Let H be the concatenation of the Hy j histograms
for all d and k

Table 3 Training and classification; B is the number of bootstrap iter-
ations (i.e., the size of the classifier ensemble)

Training

Let T ={(H;,y)},i =1,..., N be the set of N training
examples where H; is the concatenated histogram for
training image i and y; is the corresponding class
label (i.e., stonefly species)

For bootstrap replicate b =1, ..., B
Construct training set 7, by sampling N training

examples randomly with replacement from 7
Let LM T}, be the logistic model tree fitted to 7}

Classification

Given a test image, let H be the concatenated histogram
resulting from feature vector construction
Let votes[k] = 0 be the number of votes for class k
Forb=1,...,B
Let y, be the class predicted by LM T}, applied to H
Increment votes[yp].
Let y = argmax;, votes[k] be the class with the most votes
Predict y

We use the Hessian-affine detector implementation avail-
able from Mikolajczyk' with a detection threshold of 1,000.
For the Kadir entrophy detector, we use the binary code
made available by the author® and set the scale search range
between 25-45 pixels with the saliency threshold at 58. All
the parameters for the two detectors mentioned above are
obtained empirically by modifying the default values in order
to obtain reasonable regions. For the PCBR detector, we
detect in three scales with op = 1, 2, 4. The higher value in
hysteresis thresholding is 0.04. The two ratios applied to get
the lower thresholds are 0.2 and 0.7—producing low thresh-
olds of 0.008 and 0.028, respectively. Each detected region
is represented by a SIFT vector using Mikolajczyk’s modifi-
cation to the binary code distributed by David Lowe [25].
We then construct a separate dictionary for each region
detector d and each class k. Let Sy x be the SIFT descriptors
for the regions found by detector d in all cluster-set images

I www.robots.ox.ac.uk/"vgg/research/affine/.

2 www.robots.ox.ac.uk/ timork/salscale.html.
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from class k. We fit a Gaussian mixture model (GMM) to Sy «
via the expectation-maximization (EM) algorithm. A GMM
with L components has the form

L

p() =" Cake(s| itaker Zare)PE) (7)
=1

where s denotes a SIFT vector and the component probability
distribution Cy k¢ is amultivariate Gaussian density function
with mean 14 ¢ and covariance matrix Xy i ¢ (constrained
to be diagonal). Each fitted component of the GMM defines
one of L keywords. Given a new SIFT vector s, we compute
the corresponding keyword £ = key, ;(s) by finding the £
that maximizes p(S | itq k¢, Xd.k.¢)- Note that we disregard
the mixture probabilities P (£). This is equivalent to map-
ping s to the nearest cluster center 1ty under the Mahalobis
distance defined by .

We initialize EM by fitting each GMM component to each
cluster obtained by the k-means algorithm. The k-means
algorithm is initialized by picking random elements. The
EM algorithm iterates until the change in the fitted GMM
error from the previous iteration is less than 0.05% or until
a defined number of iterations is reached. In practice, learn-
ing of the mixture almost always reaches the first stopping
criterion (the change in error is less that 0.05%).

After building the keyword dictionaries, we next construct
a set of training examples by applying the three region detec-
tors to each training image. We characterize each region
found by detector d with a SIFT descriptor and then map
the SIFT vector to the nearest keyword (as describe above)
for each class k using key, ;. We accumulate the keywords
to form a histogram Hj ; and concatenate these histograms
to produce the final feature vector. With D detectors, K clas-
ses, and L mixture components, the number of attributes A
in the final feature vector (i.e., the concatenated histogram)
isD-K-L.

Upon constructing the set of training examples, we next
learn the classifier. We employ a state-of-the-art ensemble
classification method: bagged logistic model trees. Bagging
[3] is a general method for constructing an ensemble of clas-
sifiers. Given a set 7' of labeled training examples and a
desired ensemble size B, it constructs B bootstrap replicate
training sets T, b = 1, ..., B. Each bootstrap replicate is
a training set of size |7T'| constructed by sampling uniformly
with replacement from 7. The learning algorithm is then
applied to each of these replicate training sets 7} to produce
a classifier LM Tj. To predict the class of a new image, each
L MTy is applied to the new image and the predictions vote to
determine the overall classification. The ensemble of LMTs
classifier only interacts with the feature vectors generated by
the CFH method.

Our chosen learning algorithm is the logistic model tree
(LMT) method of Landwehr et al. [23]. An LMT has the
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structure of a decision tree where each leaf node contains
a logistic regression classifier. Each internal node tests the
value of one chosen feature from the feature vector against a
threshold and branches to the left child if the value is less than
the threshold and to the right child if the value is greater than
or equal to the threshold. LMTs are fit by the standard top-
down divide-and-conquer method employed by CART [4]
and C4.5 [36]. At each node in the decision tree, the algo-
rithm must decide whether to introduce a split at that point
or make the node into a leaf (and fit a logistic regression
model). This choice is made by a one-step lookahead search
in which all possible features and thresholds are evaluated
to see which one will result in the best improvement in the
fit to the training data. In standard decision trees, efficient
purity measures such as the GINI index or the information
gain can be employed to predict the quality of the split. In
LMTs, itis instead necessary to fita logistic regression model
to the training examples that belong to each branch of the
proposed split. This is computationally expensive, although
the expense is substantially reduced via a clever incremental
algorithm based on logit-boost [14]. Thorough benchmark-
ing experiments show that LMTs give robust state-of-the-art
performance [23].

5 Experiments and results

We now describe the series of experiments carried out to
evaluate our system. We first discuss the data set and show
some example images to demonstrate the difficulty of the
task. Then we present the series of experiments and discuss
the results.

5.1 Stonefly dataset

We collected 263 specimens of four stonefly taxa from fresh-
water streams in the mid-Willamette Valley and Cascade
Range of Oregon: the species Calineuria californica (Banks),
the species Doroneuria baumanni Stark & Baumann, the spe-
cies Hesperoperla pacifica (Banks), and the genus Yoraperla.
Each specimen was independently classified by two experts,
and only specimens that were classified identically by both
experts were considered in the study. Each specimen was
placed in its own vial with an assigned control number and
then photographed using the apparatus described in Sect. 4.
Approximately, ten photos were obtained of each specimen,
which yields 20 individual images. These were then manu-
ally examined, and all images that gave a dorsal view within
30° of vertical were selected for analysis. Table 4 summarizes
the number of specimens and dorsal images obtained.

A potential flaw in our procedure is that the specimen
vials tended to be grouped together by taxon (i.e., several
Calineurias together, then several Doroneurias, etc.), so that
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Table 4 Specimens and images employed in the study

Taxon Specimens Images
Calineuria 85 400
Doroneuria 91 463
Hesperoperla 58 253
Yoraperla 29 124

in any given photo session, most of the specimens being
photographed belong to a single taxon. This could introduce
some implicit cues (e.g., lighting, bubbles, and scratches) that
might permit the learning algorithm to “cheat”. The appara-
tus constrains the lighting so that it is very consistent in all
sessions. We did detect some bubbles in the images. In cases
where the region detectors found those bubbles, we manually
remove the detections to ensure that they are not influencing
the results.

Figure 6 shows some of the images collected for the study.
Note the variety of colors, sizes, and poses. Note also that

(@)

Yoraperla, which is in the family Peltoperlidae, is quite
distinctive in color and shape. The other three taxa, which are
all in the family Perlidae, are quite similar to each other, and
the first two (Calineuria and Doroneuria) are exceedingly
difficult to distinguish. This is emphasized in Fig. 7, which
shows closeup dorsal views. To verify the difficulty of dis-
criminating these two taxa, we conducted an informal study
that tested the ability of humans to identify between them. A
total of 26 students and faculty from Oregon State Univer-
sity were allowed to train on 50 randomly selected images of
Calineuria and Doroneuria, and were subsequently tested
with another 50 images. Most of the subjects (21) had some
prior entomological experience. The mean score was 78.6%
correctly identified (std. dev. = 8.4). There was no statistical
difference between the performance of entomologists and
non-entomologists (Wilcoxon two-sample test [38], W =
57.5, P < 0.5365).

Given the characteristics of the taxa, we defined three dis-
crimination tasks, which we term CDHY, JtHY, and CD as
follows:

CDHY: Discriminate among all four taxa.

Fig. 6 Example images of different stonefly larvae species. a Calineuria, b Doroneuria, ¢ Hesperoperla and d Yoraperla

(d)

Fig. 7 Images visually comparing Calineuria and Doroneuria. a Calineuria, b Doroneuria, ¢ Calineuria detail and d Doroneuria detail
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Table 5 Partitions for 3-fold cross-validation

Partition # Specimens # Images
87 413
97 411
79 416

JtHY: Merge Calineuria and Doroneuria to define a single
class, and then discriminate among the resulting three
classes.

CD: Focus on discriminating only between Calineuria and
Doroneuria.

The CDHY task assesses the overall performance of the sys-
tem. The JtHY task is most relevant to biomonitoring, since
Calineuria and Doroneuria have identical pollution tolerance
levels. Hence, discriminating between them is not critical for
our application. Finally, the CD task presents a very challeng-
ing objective recognition problem, so it is interesting to see
how well our method can do when it focuses only on this
two-class problem.

Performance on all three tasks is evaluated via three-fold
cross-validation. The images are randomly partitioned into
three equal-sized sets under the constraint that all images of
any given specimen were required to be placed in the same
partition. In addition, to the extent possible, the partitions are
stratified so that the class frequencies are the same across the
three partitions. Table 5 gives the number of specimens and
images in each partition.

In each “fold” of the cross-validation, one partition serves
as the clustering data set for defining the dictionaries, a sec-
ond partition serves as the training data set, and the third
partition serves as the test set.

Our approach requires specification of the following
parameters:

— the number L of mixture components in the Gaussian
mixture model for each dictionary,

— the number B of bootstrap replicates for bagging,

— the minimum number M of training examples in the
leaves of the logistic model trees, and

— the number 7 of iterations of logit boost employed for
training the logistic model trees.

These parameters are set as follows. L is determined for each
species through a series of EM fitting procedures. We incre-
ment the number of mixture components until the GMM is
capable of modeling the data distribution—when the GMM
achieves a relative fitting error below 5% in less than 100
EM iterations. The resulting values of L are 90, 90, 85 and
65 for Calineuria, Doroneuria, Hesperoperla, and Yoraper-
la, respectively. Likewise, B is determined by evaluating a
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Table 6 Number of bagging iterations for each experiments

Experiment Bagging iterations B
4-species: CDHY 20
3-species: JtHY 20
2-species: CD 18

series of bagging ensembles with different numbers of clas-
sifiers on the same training set. The number of classifiers
in each ensemble is incremented by two until the training
error starts to increase, at which point B is simply assigned
to be five less than that number. The reason we assign B to
be 5 less than the number that causes the training error to
increase—rather than simply assign it to the largest number
that produces the lowest error—is that the smaller number of
boostrap replicates helps to avoid overfitting. Table 6 shows
the value of B for each of the three tasks. The minimum num-
ber M of instances that each leaf in the LMT requires to avoid
pruning is set to 15, which is the default value for the LMT
implementation recommended by the authors. The number
of logit boost iterations / is set by internal cross-validation
within the training set while the LMT is being induced.

5.2 Results

We designed our experiments to achieve two objectives. First,
we wanted to see how well the CFH method (with three region
detectors) coupled with an ensemble of LMTs performs on
the three recognition tasks. To establish a basis for evalua-
tion, we also apply the method of Opelt et al. [33], which is
currently one of the best object recognition systems. Second,
we wanted to evaluate how each of the three region detectors
affects the performance of the system. To achieve this second
objective, we train our system using seven different configu-
rations corresponding to training with all three detectors, all
pairs of detectors, and all individual detectors.

5.2.1 Overall results

Table 7 shows the classification rates achieved by the CFH
method on the three discrimination tasks. Tables 8, 9, and
10 show the confusion matrices for the three tasks. On the

Table 7 Percentage of images correctly classified by our system with
all three region detectors along using a 95% confidence interval

Task Accuracy %

CDHY 82.424+2.12
JtHY 9540+ 1.16
CD 79.37+£2.70
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Table 8 CDHY confusion matrix of the combined Kadir, Hessian-
affine and PCBR detectors

Predicted as = Cal. Dor. Hes. Yor.
Calineuria 315 79 6 0
Doroneuria 80 381 2 0
Hesperoperla 24 22 203 4
Yoraperla 1 0 0 123

Table 9 JtHY confusion matrix of the combined Kadir, Hessian-affine
and PCBR detectors

Predicted as = Joint CD Hes. Yor.
Joint CD 857 5 1
Hesperoperla 46 203 4
Yoraperla 0 1 123

Table 10 CD confusion matrix of the combined Kadir, Hessian-affine
and PCBR detectors

Predicted as = Calineuria Doroneuria
Calineuria 304 96
Doroneuria 82 381

CDHY task, our system achieves 82% correct classifications.
The confusion matrix shows that it achieves near perfect rec-
ognition of Yoraperla. It also recognizes Hesperoperla very
well with only a few images misclassified as Calineuria or
Doroneuria. As expected, the main difficulty is to discrim-
inate Calineuria and Doroneuria. When these two classes
are pooled in the JtHY task, performance reaches 95% cor-
rect, which is excellent. It is interesting to note that if we
had applied the four-way classifier and then pooled the pre-
dictions of the classifiers, the three-class performance would
have been slightly better (95.48% vs. 95.08%). The differ-
ence is that in the JtHY task, we learn a combined dictio-
nary for the merged Calineuria and Doroneuria (CD) class,
whereas in the four-class task, each taxon has its own dictio-
naries.

A similar phenomenon occurs in the two-class CD task.
Our method attains 79% of correct classification rate when
trained on only these two tasks. If instead, we applied the
CDHY classifiers and treated predictions for Hesperoperla
and Yoraperla as errors, the performance would be slightly
better (79.61% vs. 79.37%). These differences are not
statistically significant, but they do suggest that in future
work it might be useful to build separate dictionaries
and classifiers for groups within each taxon (e.g., first clus-
ter by size and color) and then map the resulting predictions
back to the four-class task. On this binary classification
task, our method attains 79% correct classification, which is

approximately equal to the mean for human subjects with
some prior experience.

Our system is capable of giving a confidence measure
to each of the existing categories. We performed a series
of experiments where the species assignment is thresholded
by the difference between the two highest confidence mea-
sures. In this series, we vary the threshold from O to 1. If the
difference is higher than the defined threshold, the label of
the highest is assigned otherwise the specimen is declared
as “uncertain”. Figure 8 shows the plotting of the accuracy
against the rejection rate. The curves show us that if we reject
around 30% of the specimens, all the tasks will reach an accu-
racy higher than 90%, even the CD task.

We also evaluate the performance of our classification
methodology relative to a competing method [33] on the
most difficult CD task using the same image features. Opelt’s
method is similar to our method in that it is also based on
ensemble learning principles (AdaBoost), and it is also capa-
ble of combining multiple feature types for classification. We
adapted Opelt’s Matlab implementation to our features and
used the default parameter settings given in the paper. The
Euclidean distance metric was used for the SIFT features and
number of iterations / was set to 100. Table 11 summarizes
the classification rates. Our system provides 8—12% better
accuracy than Opelt’s method for all four combinations of
detectors. In addition, training Opelt’s classifier is more com-
putationally expensive than is training our system. In partic-
ular, the complexity of computing Opelt’s feature-to-image
distance matrix is O(T2R2D), where T is the number of
training images, R is the maximum number of detected image
regions in a single image, and D = 128 is the SIFT vector
dimension. The total number of detected training regions,
T - R, is easily greater than 20,000) in this application. On
the other hand, training our system is much faster. The com-
plexity of building the LMT ensemble classifier (which dom-
inates the training computation) is O(T - A - I), where A is
the number of histogram attributes and 7 is the number of
LMT induction iterations (typically in the hundreds).

5.2.2 Results for multiple region detectors

Table 12 summarizes the results of applying all combinations
of one, two, and three detectors to the CDHY, JtHY, and CD
tasks. The first three lines show that each detector has unique
strengths when applied alone. The Hessian-affine detector
works best on the 4-class CDHY task; the Kadir detector is
best on the three-class JtHY task, and the PCBR detector
gives the best two-class CD results. On the pairwise experi-
ments it appears that the Hessian-affine and PCBR comple-
ment each other well. The best pairwise results for the JIHY
task is obtained by the Kadir—Hessian pair; which appears
to be better for tasks that require an overall assessment of
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Table 11 Comparison of CD classification rates using Opelt’s method
and our system with different combinations of detectors. A ./ indicates
the detector(s) used

Hessian affine Kadir entropy PCBR Accuracy (%)
Opelt [33] Ours
J 60.59 70.10
J 62.63 70.34
Vv 67.86 79.03
J J Vv 70.10 79.37

shape. Finally, the combination of all three detectors gives
the best results on each task.

To understand the region detector results, it is helpful to
look at their behaviors. Figures 9 and 10 show the regions
found by each detector on selected Calineuria and Doroneu-
ria specimens. The detectors behave in quite different ways.
The PCBR detector is very stable, although it does not always
identify all of the relevant regions. The Kadir detector is also
stable, but it finds a very large number of regions, most of
which are not relevant. The Hessian-affine detector finds very
good small-scale regions, but its larger-scale detections are
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Table 12 Classification rates using our system with different combi-
nations of detectors. A / indicates the detector(s) used

Hessian affine  Kadir entropy PCBR  Accuracy (%)
CDHY JtHY CD

J 73.14 90.32  70.10
v 70.64 90.56  70.34
J 71.69 86.21  79.03
J Vv 78.14 94.19 74.16
J Vv 80.48 93.79 78.68
Vv J 78.31 92.09 68.83
J Vv Vv 82.42 9540 79.37

not useful for classification. The PCBR detector focuses on
the interior of the specimens, whereas the other detectors
(especially Kadir) tend to find points on the edges between
the specimens and the background. In addition to concentrat-
ing on the interior, the regions found by the PCBR detector
are more “‘meaningful” in that they correspond better to body
parts. This may explain why the PCBR detector did a better
job on the CD task.
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Fig. 9 Visual Comparison of the regions output by the three detectors on three Calineuria specimens. a Hessian-affine, b Kadir entropy, c PCBR

Fig. 10 Visual Comparison of the regions output by the three detectors on four Doroneuria specimens. a Hessian-affine, b Kadir entropy, ¢ PCBR

6 Conclusions and future work

This paper has presented a combined hardware-software sys-
tem for rapid-throughput classification of stonefly larvae. The
goal of the system is to perform cost-effective bio-monitoring
of freshwater streams. To this end, the mechanical appara-
tus is capable of nearly unassisted manipulation and imaging
of stonefly specimens while also obtaining consistently high
quality images. The generic object recognition algorithms
attain classification accuracy that is sufficiently good (82%
for four-classes; 95% for three-classes) to support the appli-
cation. By rejecting for manual classification the specimens

in which the confidence level is not high enough; only a rea-
sonable 30% of the samples would require further processing
while the remaining identified specimens can reach an accu-
racy above 90% on all the defined tasks.

We compared our CFH method to Opelt’s related state-of-
art method on the most difficult task, discrimating Caline-
uria from Doroneuria. The CFH method always achieved
better performance. It is also worth noticing that human sub-
jects with some prior experience and using the same images
reached an accuracy equal to our method. Finally, we des-
cribed a new region detector, the principal curvature-based
region (PCBR) detector. Our experiments demonstrated
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that PCBR is particularly useful for discriminating between
the two visually similar species, and, as such provides an
important contribution in attaining greater accuracy.

There are a few details that must be addressed before the
system is ready for field testing. First, the mechanical appa-
ratus must be modified to include mechanisms for sorting
the specimens into bins after they have been photographed
and classified. Second, we need to develop an algorithm for
determining whether a good dorsal image of the specimen
has been obtained. We are currently exploring several meth-
ods for this including training the classifier described in this
paper for the task. Third, we need to evaluate the perfor-
mance of the system on a broader range of taxa. A practical
bio-monitoring system for the Willamette Valley will need
to be able to recognize around 8 stonefly taxa. Finally, we
need to develop methods for dealing with specimens that are
not stoneflies or that do not belong to any of the taxa that the
system is trained to recognize. We are studying SIFT-based
density estimation techniques for this purpose.

Beyond freshwater stream bio-monitoring, there are many
other potential applications for rapid-throughput arthropod
recognition systems. One area that we are studying involves
automated population counts of soil mesofauna for soil biodi-
versity studies. Soil mesofauna are small arthropods (mites,
spiders, pseudo-scorpions, etc.) that live in soils. There are
upwards of 2,000 species, and the study of their interactions
and population dynamics is critical for understanding soil
ecology and soil responses to different land uses. In our future
work, we will test the hypothesis that the methods described
in this paper, when combined with additional techniques for
shape analysis and classification, will be sufficient to build a
useful system for classifying soil mesofauna.

Acknowledgments We wish to thank Andreas Opelt for providing the
Matlab code of his PAMI’06 method for the comparison experiment.
We also wish to thank Asako Yamamuro and Justin Miles for their
assistance with the dataset stonefly identification.

References

1. Arbuckle, T., Schroder, S., Steinhage, V., Wittmann, D.:
Biodiversity informatics in action: identification and monitoring
of bee species using ABIS. In: Proceedings of the 15th Inter-
national Symposium Informatics for Environmental Protection,
vol. 1, pp. 425-430. Zurich (2001)

2. Bouchard, G., Triggs, B.: Hierarchical part-based visual object
categorization. In: IEEE Conference on Computer Vision and
Pattern Recognition, pp. I 710-715 (2005). http://lear.inrial-
pes.fr/pubs/2005/BT05

3. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123-140
(1996). http://citeseer.ist.psu.edu/breiman96bagging.html

4. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification
and Regression Trees. Chapman and Hall, New York (1984)

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Burl, M., Weber, M., Perona, P.: A probabilistic approach to object
recognition using local photometry and global geometry. In: Pro-
ceedings of the ECCV, pp. 628-641 (1998)

Carter, J., Resh, V., Hannaford, M., Myers, M.: Macroinverte-
brates as biotic indicators of env. qual. In: Hauer, F., Lamberti,
G. (eds.) Methods in Stream Ecology. Academic, San Diego
(2006)

Csurka, G., Dance, C., Fan, L., Williamowski, J., Bray, C.: Visual
categorization with bags of keypoints. ECCV’04 workshop on
Statistical Learning in Computer Vision, pp. 59-74 (2004)
Csurka, G., Bray, C., Fan, C.L.: Visual categorization with bags
of keypoints. ECCV workshop (2004)

Do, M., Harp, J., Norris, K.: A test of a pattern recognition sys-
tem for identification of spiders. Bull. Entomol. Res. 89(3), 217—
224 (1999)

Dorko, G., Schmid, C.: Object class recognition using discrim-
inative local features. INRIA—Rhone-Alpes, RR-5497, Feb-
ruary, 2005, Rapport de recherche. http://lear.inrialpes.fr/pubs/
2005/DS05a

Dorkd, G., Schmid, C.: Object class recognition using discrimina-
tive local features (2005). http://lear.inrialpes.fr/pubs/2005/DS05.
Accepted under major revisions to IEEE Trans. Pattern Anal.
Mach. Intell. (updated 13 September)

Fergus, R., Perona, P., Zisserman, A.: Object class recognition
by unsupervised scale-invariant learning. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
vol. 2, pp. 264-271. Madison, Wisconsin (2003)

Freund, Y., Schapire, R.E.: Experiments with a new boosting
algorithm. In: International Conference on Machine Learning,
pp. 148-156 (1996). http://citeseer.ist.psu.edu/freund96experi-
ments.html

Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regres-
sion: a statistical view of boosting (1998). http://citeseer.ist.psu.
edu/friedman98additive.html

Gaston, K.J., O’Neill, M.A.: Automated species identification:
why not? Philosophical Trans. R. Soc. B: Biol. Sci. 359(1444),
655-667 (2004)

Harris, C., Stephens, M.: A combined corner and edge detector.
Alvey Vision Conference, pp. 147-151 (1988)

Hilsenhoff, W.L.: Rapid field assessment of organic pollution with
a family level biotic index. J. North Am. Benthol. Soc. 7, 65-68
(1988)

Hopkins, G.W., Freckleton, R.P.: Declines in the numbers of
amateur and professional taxonomists: implications for conser-
vation. Anim. Conserv. 5(3), 245-249 (2002)

Jurie, F., Schmid, C.: Scale-invariant shape features for recogni-
tion of object categories. CVPR 2, 90-96 (2004)

Jurie, F., Triggs, B.: Creating efficient codebooks for visual rec-
ognition. In: ICCV ’05: Proceedings of the 10th IEEE Interna-
tional Conference on Computer Vision (ICCV’05), vol. 1, pp.
604-610. IEEE Computer Society, Washington, DC, USA (2005).
DOI http://dx.doi.org/10.1109/ICCV.2005.66

Kadir, T., Zisserman, A., Brady, M.: An affine invariant salient
region detector. In: European Conference on Computer Vision
(ECCV04), pp. 228-241 (2004)

Kumar, S., August, J., Hebert, M.: Exploiting inference for
approximate parameter learning in discriminative fields: an empir-
ical study. In: 5th International Workshop, EMMCVPR 2005, pp.
153-168. Springer, St. Augustine (2005)

Landwehr, N., Hall, M., Frank, E.: Logistic model trees. Mach.
Learn. 59(1-2), 161-205 (2005). DOI 10.1007/s10994-005-
0466-3

Leibe, B., Seemann, E., Schiele, B.: Pedestrian detection in
crowded scenes. In: CVPR ’05: Proceedings of the 2005
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), vol. 1, pp. 878-885.



Automated insect identification through concatenated histograms of local appearance features

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

IEEE Computer Society, Washington, DC, USA (2005). DOI
http://dx.doi.org/10.1109/CVPR.2005.272

Lowe, D.G.: Distinctive image features from scale-invariant
keypoints. Int. J. Comput. Vis. 60(2), 91-110 (2004). DOI
10.1023/B:VISI.0000029664.99615.94

Lucas, S.: Face recognition with continuous n-tuple classifier. In:
Proceedings of the British Machine Vision Conference, pp. 222—
231. Essex (1997)

Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-
baseline stereo from maximally stable extremal regions. Image
Vis. Comput. 22(10), 761-767 (2004)

Mikolajczyk, K., Schmid, C.: An affine invariant interest point
detector. ECCV 1(1), 128-142 (2002)

Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest
point detectors. IJCV 60(1), 63-86 (2004)

Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A.,
Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A compar-
ison of affine region detectors. IICV 65(1/2), 43-72 (2005).
http://lear.inrialpes.fr/pubs/2005/MTSZMSKGO05

O’Neill, M.A., Gauld, 1.D., Gaston, K.J., Weeks, P.: Daisy: an
automated invertebrate identification system using holistic vision
techniques. In: Proceedings of the Inaugural Meeting BioNET-
INTERNATIONAL Group for Computer-Aided Taxonomy (BIG-
CAT), pp. 13-22. Egham (2000)

Opelt, A., Fussenegger, M., Pinz, A., Auer, P.. Weak hypothe-
ses and boosting for generic object detection and recognition. In:
8th European Conference on Computer Vision, vol. 2, pp. 71-84.
Prague, Czech Republic (2004)

Opelt, A., Pinz, A., Fussenegger, M., Auer, P.: Generic object
recognition with boosting. IEEE Trans. Pattern Anal. Mach. In-
tell. 28(3), 416-431 (2006)

Papageorgiou, C., Poggio, T.: A trainable system for object detec-
tion. Int. J. Comput. Vis. 38(1), 15-33 (2000)

Quattoni, A., Collins, M., Darrell, T.: Conditional random fields
for object recognition. In: Proceedings of the NIPS 2004. MIT
Press, Cambridge (2005)

Quinlan, J.R.: C4.5: programs for machine learning. Morgan
Kaufmann, San Francisco (1993)

Shotton, J., Blake, A., Cipolla, R.: Contour-based learning
for object detection. In: ICCV ’05: Proceedings of the 10th
IEEE International Conference on Computer Vision (ICCV’05),
vol. 1, pp. 503-510. IEEE Computer Society, Washington, DC,
USA (2005). DOI http://dx.doi.org/10.1109/ICCV.2005.63
Sokal, R.R., Rohlf, F.J.: Biometry, 3rd edn. W. H. Freeman,
Gordonsville (1995)

Steger, C.: An unbiased detector of curvilinear struc-
tures. PAMI 20(2), 113-125 (1998)

Sung, K.K., Poggio, T.: Example-based learning for view-based
human face detection. IEEE Trans. Pattern Anal. Mach. In-
tell. 20(1), 39-51 (1998)

Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In:
Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, pp. 586-591 (1991)

Tuytelaars, T., Gool, L.V.: Wide baseline stereo matching based
on local, affinely invariant regions. BMVC, pp. 412-425 (2000)
Tuytelaars, T., Gool, L.V.: Matching widely separated views based
on affine invariant regions. IICV 59(1), 61-85 (2004)

Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient
algorithm based on immersion simulations. PAMI 13(6), 583—
598 (1991)

Zhang, W., Deng, H., Dietterich, T.G., Mortensen, E.N.: A hier-
archical object recognition system based on multi-scale principal
curvature regions. International Conference of Pattern Recogni-
tion, pp. 1475-1490 (2006)

Author biographies

Natalia Larios received the BS
in Computer Engineering from the
Universidad Nacional Autonoma
de Mexico in 2003. She is currently
a graduate student and research
assistant in the Electrical Engineer-
ing Department at the University
of Washington. Her research inter-
ests include computer vison, object
recognition and image retrieval
employing machine learning and
probabilistic modeling.

Hongli Deng received a BE degree
in 1992 from Wuhan University of
technology and ME degree in 1999
from Sichuan University in China.
He is a PhD candidate in Electri-
cal Engineering and Computer Sci-
ence department of Oregon State
University. His research interests
are local image feature detection,
description and registration.

Wei Zhang received the BS and
MS degrees from Xi’an Jiaotong
University, China, in 2001 and
2004. Currently, he is a PhD candi-
date and research assistant at Ore-
gon State University. His research
interests include machine learning,
computer vision and object recog-
nition.

@ Springer



N. Larios et al.

@ Springer

Matt Sarpola  graduated from
Oregon State University with his
MS in mechanical engineering in
2005 and currently does new product
research and development for Videx
in Corvallis, OR.

Jenny Yuen is currently a grad-
uate student at the Massachusetts
Institute of Technology Computer
Science and Artificial Intelligence
Laboratory, where she is working
on computer vision for event recog-
nition and detection. She has a BS
in Computer Science from the Uni-
versity of Washington.

Robert Paasch is an Associ-
ate Professor in the Department
of Mechanical Engineering at Ore-
gon State University, and currently
holds the Boeing Professorship in
Mechanical Design. He received his
Ph.D. in Mechanical Engineering
from the University of California
at Berkeley in 1990. His research
interests include automated moni-
toring and diagnosis, probabilistic
and robust design, and design the-
ory and methodology.

Andrew R. Moldenke is an ecol-
ogist in the Department of Bot-
any and Plant Pathology at Ore-
gon State University. His research
interests center on the interactions
between arthropods and plants, in
particular pollination and nutri-
ent recycling. He is especially
concerned about the inability of
scientists to develop appropriate
protocols for measuring critical
changes in biodiversity as the cli-
mate changes due to the sheer num-
bers of arthropod species and the
limited number of trained taxono-
mists.

Dave A. Lytle is currently an Assis-
tant Professor of Zoology at Ore-
gon State University. He received
his PhD in Ecology and Evolution-
ary Biology from Cornell Univer-
sity in 2000. He has been a D.H.
Smith Postdoctoral Fellow and a
Postdoctoral Associate in the Uni-
versity of Chicago. His research
interests include the use of evolu-
tionary ecology to understand how
aquatic organisms are shaped.

Salvador Ruiz Correa was born
in Mexico City, Mexico, 1966. He
received the B.S. and M.S. degrees
in Electrical Engineering from the
Universidad Nacional Autonoma
de Mexico, in 1990 and 1994,
respectively, and the Ph.D. degree
in Electrical Engineering from the
University of Washington, Seattle,
in 2004. He has worked as a post-
doctoral fellow in imaging infor-
matics at Children’s Hospital and
Regional Medical Center in Seattle,
WA, and Children’s National Med-
ical Center in Washington, D.C.,

from 2004 to present. Currently, he is the director of the Pediatric Imag-
ing Research Laboratory at CNMC. His research interests include com-
puter vision, biomedical image processing, pattern recognition, robotics
and imaging informatics. Dr. Ruiz is an associate member of the IEEE
and reviewer for IEEE PAMI, the International Journal of Computer
Vision and Pattern Recognition and IEEE Transactions on Multimedia.

‘ Tl

Computing Machinery (ACM).

Eric N. Mortensen is an Assis-
tant Professor in the School
of Electrical Engineering and
Computer Science at Oregon
State University. He received
his Ph.D. in Computer Science
from Brigham Young Univer-
sity in 2000. His research inter-
ests include interactive vision,
image and video segmentation and
editing, feature detection/descrip-
tion/matching, object recognition,
and image-based modeling. He is
a member of the Institute of Elec-
trical and Electronics Engineers
(IEEE) and the Association for



Automated insect identification through concatenated histograms of local appearance features

Linda G. Shapiro is a Professor
of Computer Science and Engineer-
ing and of Electrical Engineering at
the University of Washington. Her
research interests include computer
vision, image database systems,
artificial intelligence, pattern recog-
nition, and robotics. She is a Fellow
of the IEEE, a Fellow of the IAPR,
and a past Chair of the IEEE Com-
puter Society Technical Committee
on Pattern Analysis and Machine
Intelligence. She has served as
Editor-in-Chief of CVGIP: Image
Understanding, Associate Editor of
IEEE Transactions on Pattern Analysis and Machine Intelligence, and
Chair or Program Chair of numerous computer vision conferences. She
has co-authored three textbooks, one on data structures and two on
computer vision.

Thomas G. Dietterich is
Professor and Director of Intel-
ligent Systems in the School of
Electrical Engineering and Com-
puter Science at Oregon State Uni-
versity, where he joined as the
faculty in 1985. In 1987, he was
named a Presidential Young Inves-
tigator for the NSF. In 1990, he
published, with Dr. Jude Shav-
lik, the book entitled Readings in
Machine Learning, and he also
served as the Technical Program
Co-Chair of the National Con-
ference on Artificial Intelligence
(AAAI-90). From 1992 to 1998 he
held the position of Executive Editor of the journal Machine Learning.
He is a Fellow of the American Association for Artificial Intelligence
(1994) and of the Association for Computing Machinery (2003). In
2000, he co-founded a new, free electronic journal: The Journal of
Machine Learning Research. He served as Technical Program Chair of
the Neural Information Processing Systems (NIPS) conference in 2000
and General Chair in 2001. He is currently President of the International
Machine Learning Society, and he also serves on the Board of Trustees
of the NIPS Foundation.

@ Springer



	Automated insect identification through concatenated histogramsof local appearance features: feature vector generationand region detection for deformable objects
	Abstract 
	Introduction
	Related work
	Automated insect identification systems
	Automated bee identification system
	Digital automated identification system
	Species identification, automated and web accessible
	Summary of previous insect identification work
	Generic object recognition
	Principal curvature-based region detector
	A curvature-based region detector
	Principal curvature image
	Watershed segmentation
	Stonefly identification system
	Semi-automated mechanical manipulation and imaging of stonefly larvae
	Training and classification
	Experiments and results
	Stonefly dataset
	Results
	Overall results
	Results for multiple region detectors
	Conclusions and future work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


